期刊文献+

新型九节点协同转动四边形弹塑性壳单元

Advanced nine-node co-rotational quadrilateral elasto-plastic shell element
下载PDF
导出
摘要 为求解板壳结构的弹塑性大变形问题,发展了一种新型九节点协同转动四边形壳单元.与现有的其他协同转动壳单元相比,由于在单元中采用了增量可直接累加的矢量型转动变量,大大降低了非线性增量求解过程中更新转动变量的难度,且在整体与局部坐标系下能得到对称的单元切线刚度矩阵,单元的计算效率得到明显提高.在单元公式中,引入了von Mises材料屈服准则,采用向后欧拉迭代法进行材料本构关系的隐式积分,并选用一致材料模量矩阵.为减轻闭锁现象的不利影响,单元中还引入了假定应变法.通过2个典型算例,证明了这种新型九节点协同转动四边形壳单元在求解板壳结构弹塑性大变形问题时的计算精度和收敛性是令人满意的. A nine-node co-rotational quadrilateral shell element for elasto-plastic shell structures undergoing arbitrarily large rotations was presented.Different from other existing co-rotational shell element formulations,additive vectorial rotational variables were employed in the proposed formulation,thus,updating nodal variables in a nonlinear incremental solution procedure becomes very simple,and symmetric element tangent stiffness matrices were achieved in both local and global coordinate systems,resulting in better computational efficiency.For analyses of elasto-plastic shell problems,the von Mises yield criterion was introduced,and an implicit integration of the flow rules using the backward-Euler return approach was employed,meanwhile,consistent tangent moduli were derived.An assumed strain method was used to overcome locking phenomena,and the computational efficiency and accuracy of the present element were verified through several elasto-plastic shell problems undergoing arbitrarily large rotations.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第3期424-430,440,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50408022) 航天支撑技术基金资助项目 钱江人才计划B类资助项目(2009R10015) 中央高校基本科研业务费专项资金资助项目(2009QNA4023)
关键词 四边形壳单元 弹塑性变形 协同转动 大转角 假定应变 quadrilateral shell element elasto-plastic co-rotational approach large rotation assumed strain method
  • 相关文献

参考文献19

  • 1BELYTSCHKO T, LIU W K, MORAN B. Nonlinear finite elements for continua and structures [M]. New York: Wiley, 2000.
  • 2BATTINI J M, PACOSTE C. On the choice of the linear element for corotational triangular shells [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44/45/46/47): 6362-6377.
  • 3FELIPPA C A, HAUGEN B. A unified formulation of smallstrain corotational finite elements: I. Theory [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21/22/23/24): 2285-2335.
  • 4IZZUDDIN B A. An enhanced corotational approach for large displacement analysis of plates [J]. International Journal for Numerical Methods in Engineering, 2005, 64(10): 1350-1374.
  • 5CRISFIELD M A, MOITA G F. A unified corotational framework for solids, shells and beams [J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 2969-2992.
  • 6LI Z X, VUQUOC L. An efficient corotational formulation for curved triangular shell element [J]. International Journal for Numerical Methods in Engineering, 2007, 72(9): 1029-1062.
  • 7LI Z X, IZZUDDIN B A, VUQUOC L. A 9node corotational quadrilateral shell element [J]. Computational Mechanics, 2008, 42(6): 873-884.
  • 8LI Z X,LIU Y F, IZZUDDIN B A, VUQUOC L. A stabilized corotational curved quadrilateral composite shell element [J]. International Journal for Numerical Methods in Engineering, 2011, 86(8): 975-999.
  • 9BRANK B, IBRAHIMBEGOVIC A. On the relation between different parametrizations of finite rotations for shells [J]. Engineering Computations, 2001, 18(7): 950-973.
  • 10MKINEN J. Rotation manifold SO(3) and its tangential vectors [J]. Computational Mechanics, 2008, 42(6): 907919.

二级参考文献13

  • 1URTHALER Y,REDDY J N.A corotational finite element formulation for the analysis of planar beams[J].Communications in Numerical Methods in Engineering,2005,21(10):553-570.
  • 2TEH L H,CLARKE M J.Symmetry of tangent stiffness matrices of 3D elastic frame[J].Journal of Engineering Mechanics,ASCE,1999,125(2):248-251.
  • 3IZZUDDIN B A.Conceptual issues in geometrically nonlinear analysis of 3D framed structures[J].Computer Methods in Applied Mechanics and Engineering,2001,191(8-10):1029-1053.
  • 4CELIGOJ C C.A strain and displacement based variational method applied to geometrically non-linear shells[J].International Journal for Numerical Methods in Engineering,1996,39(13):2231-2248.
  • 5LAKSHMINARAYANA H V,KAILASH K.Shear deformable curved shell element of quadrilateral shape[J].Computers and Structures,1989,33(4):987-1001.
  • 6CHOI C K,YOO S W.Combined use of multiple improvement techniques in degenerated shell element[J].Computers and Structures,1991,39(5):557-569.
  • 7RONG T Y,LU A Q.Generalized mixed variational principles and solutions of ill-conditioned problems in computational mechanics:Part I.Volumetric locking[J].Computer Methods in Applied Mechanics and Engineering,2001,191(3-5):407-422.
  • 8HUANG H C.Implementation of assumed strain degenerated shell elements[J].Computers and Structures,1987,25(1):147-155.
  • 9BELYTSCHKO T,LIU W K,ONG J S J,et al.Implementation and application of a 9-node Lagrange shell element with spurious mode control[J].Computers and Structures,1984,20(1-3):121-128.
  • 10DE SOUS R J A,JORGE R M N,VALENTE R A F,et al.A new volumetric and shear locking-free 3D enhanced strain element[J].Engineering Computations,2003,20(7/8):896-925.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部