期刊文献+

基于改进NLMS算法的自适应滤波算法 被引量:2

Adaptive filtering algorithm based on improved NLMS adaptive algorithm
下载PDF
导出
摘要 最小均方算法是应用最广泛的自适应算法之一,但其收敛速度欠佳。在传统NLMS算法的基础上,提出了重复调整归一化最小均方算法(DRNLMS)即在相邻两输入信号样本的间隔时间进行额外调整运算,以提高算法的收敛性,并通过计算机仿真实现该算法。 Least mean square algorithm is one of the most widely used adaptive algorithms in adaptive filtering, but its poor conver- gence performance. On the basis of traditional NLMS algorithm, Data-reusing normalized least mean square algorithm (DRNLMS) was put forward, i.e. input signal samples in adjacent two additional adjustment time interval of computing, to improve convergence per- formance, and realize this algorithm through computer simulation.
出处 《微计算机信息》 2012年第5期27-28,115,共3页 Control & Automation
关键词 自适应滤波 最小均方算法 收敛性 adaptive filtering least mean square algorithm convergence performance
  • 相关文献

参考文献5

  • 1Widrow.B,Steams.S著.自适应信号处珥[M].普伦蒂斯霍尔公司.
  • 2西蒙赫金.自适应滤波器原理[M].北京:电子工业出版社,2003.
  • 3S. Roy and J. Shynk, "Analysis of the data-reusing LMS algorithm ," Proceedings of the 32nd Midwest Symposium on Circuits and Systems, vol. 2, pp. 1127 - 1130,1990.
  • 4Jos6 Apolin6rio, Jr., Marcello L. R. Campos, and Paulo S. R. Diniz, "Convergence Analysis of the Binormalized Data-Reusing LMS Algorithm ,"IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 48. NO. 11. NOVEMBER 2000.
  • 5赵专政.一种改进的变步长LMS自适应滤波算法[J].微计算机信息,2010,26(16):231-232. 被引量:3

二级参考文献5

共引文献4

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部