期刊文献+

融合确定性信息和随机信息的插值方法研究 被引量:1

Novel interpolation algorithm for integrating deterministic and stochastic information
原文传递
导出
摘要 为了提高医学图像配准过程中的测度曲线光滑性和运算速度,本文利用图像的灰度概率分布作为确定性信息,同时利用非整数网格位置处的灰度随机性信息,定义了融合确定性信息和随机性信息的置信区域(DSCR);结合最近邻域插值法,提出了基于DSCR的最近邻域插值法(DSCRNN)。使用DSCRNN插值方法得到测度在整数平移位置处的值是准确无误差的。通过医学图像之间的刚体配准实验,从函数曲线、运算时间、抗噪鲁棒性和收敛性能方面对比分析了8种插值方法,结果表明,相对其它插值方法,DSCRNN插值方法在不牺牲插值速度的前提条件下可以提高归一化互信息(NMI)测度的收敛性能和抗噪声能力。 In order to enhance the smoothness of the measurement curve and accelerate the registration speed in medical image registration,the confidence region integrating deterministic information and stochastic information(DSCR) is defined,where the deterministic information is the intensity probability distribution in images and the stochastic information is the stochastic intensity information at non-grid position.And then a new nearest neighbor interpolation method based on DSCR is proposed,which is abbreviated as DSCRNN.The values of normalized mutual information(NMI) are deterministic and accurate at any grid translation position when the DSCRNN interpolator is used.The measures′ curves,interpolation time,noise immunity and convergence are compared by applying 8 interpolation methods to the rigid registration of brain images.The results of tests show that the new DSCRNN interpolator outperforms the other interpolators in convergence performance and noise immunity without compromising interpolation speed.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第5期1016-1022,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61102040) 山东省优秀中青年科学家科研奖励基金(BS2009DX028) 山东省高等学校科技计划(J09LG82)资助项目
关键词 医学图像配准 插值 信息 置信区域 medical image registration interpolation information confidence region
  • 相关文献

参考文献4

二级参考文献43

  • 1魏本征,赵志敏,宋一中.基于IPSO和综合信息的医学图像配准新方法[J].光电子.激光,2009,20(9):1271-1274. 被引量:10
  • 2魏雪丽,张桦,马艳洁,薛彦彬.基于最大互信息的图像拼接优化算法[J].光电子.激光,2009,20(10):1399-1402. 被引量:10
  • 3杨帆,张汗灵.遗传算法和Poweli法结合的多分辨率三维图像配准[J].光电子.激光,2006,17(6):755-758. 被引量:19
  • 4Luppino G A,Tonry J L,Stubbs C W. CCD mosaics-past,present,and future:a review[A]. SPIE[C]. 1998,3355:469-476.
  • 5Baltay C,Rabinowitz D,Andrews P,et al. The QUEST large area CCD camera[J]. Publications of the astronomical society of the pacific, 2007,119 ( 861 ) : 1278-1294.
  • 6Kaneko Y, Saitoh M, Hamaguchi I,et al. Image forming apparatus for forming image corresponding to subject, by dividing optical image corresponding to the subject into plural adjacent optical image parts[P]. U. S. Patent:5194959,1993.
  • 7Lucas B, Kanade T. An iterative image registration technique with a application to stereo visien[A]. In Proceedings of Imaging Understanding Workshop[C]. 1981:121-130.
  • 8Szeliski R. Image alignment and stitching:A tutorial[J].Foundations and Trends in Computer Graphics and Vision, 2006,2: 1-104.
  • 9Harris C, Stephens M. A combined corner and edge detector [A]. In Proceedings of the Alvey Vision Conference[C]. 1988, 147-151.
  • 10Lowe D. Distinctive Image Features from Scale-lnvariant Keypoints[J].International Journal of Computer Vision, 2004,60: 91-100.

共引文献20

同被引文献14

  • 1Candes E J, Donoho D L. New tight frames of Curveletsand optimal representations of objects with piecewise C2singularities[J]. Comm. Pure and Appl. Math.,2004,56:216-266.
  • 2Do M N,Vetterli M. The contourlet transform: an efficientdirectional multire-solution image representation[J]. IEEETransactions on Image Processing,2005,14(12): 2091-2106.
  • 3Glenn R Easley,Vishal Patel,Denis M Healy. An M-chan-nel diretional filter bank compatible with the contourletand shearlet frequency tiling[A]. Proc. of SPIE[C]. 2007,25(1):25-46.
  • 4Deng C Z,Wang S Q’Chen X. Remote sensing images fu-sion algorithm base on shearlet transform[A] . Proc. of the2009 International Conference on Environmen-tal Scienceand Information Application Technology [C]. 2009, 451-454.
  • 5Donoho D. Compressed sensing[J]. IEEE Trans. Informa-tion Theory,2006,52(4):1289-1306.
  • 6MIAO Qi-guang, SHI Cheng, XU Peng-fei. Multi-focus im-age fusion algorithm based on Shearlet[J]. Chinese Op-tics Letters,2011,9(4): 121-126.
  • 7Li X,Qin S Y. Efficient fusion for infrared and visible ima-ges based on compressive sensing principle[J]. In 丨ETImage Process,201.1,5(2) .141-147.
  • 8Candes E, Romberg J,Tao Z. Robust uncertainty princi-ples: exact signal reconstruction from highly incompletefrequency information [ J]. IEEE Trans. Inform. Theory,2006,52(2):489-509.
  • 9Bajwa W U,Haupt J D’Raz G M, wright. Toeplitz-struc-tured compressed sensing matrices[A]. Proc. of the 2007IEEE/SP 14th Workshop on Statistical Signal Processing[C].2007,294-298.
  • 10Goldstain T,Osher S. The split Bregman method for Ll-regularized problems [J]. SIAM Journal on Imaging Sci-ences,2009,2(2) :323-343.

引证文献1

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部