期刊文献+

可加函数方程在广义函数空间上的稳定性

Stability of an additive functional equation in the space of generalized functions
下载PDF
导出
摘要 利用广义函数正则化的方法给出1个可加函数在广义函数空间上的一般解,并且利用热方程的核给出该函数方程在缓增广义函数上的Hyers-Ulam-Rassias型稳定性,进一步推广了文献[1]的结论. We investigate the general solution of an additive functional equation in the space of generalized functions using the method of regularizing distributions,and give the Hyers-Ulam-Rassias stability of an additive functional equation in the space of tempered distributions using heat kernel.Our results generalize the reference of [1].
出处 《延边大学学报(自然科学版)》 CAS 2012年第1期13-16,共4页 Journal of Yanbian University(Natural Science Edition)
基金 教育部留学归国人员科研启动基金资助项目(教外司留[2008]890号)
关键词 广义函数 热方程的核 可加函数方程 稳定性 distributions heat kernel additive functional equation stability
  • 相关文献

参考文献7

  • 1Nakmahachalasint P. On the Hyers-Ulam-Rassias stability of an n-dimensional additive functional equation[J].Thai Journal of Mathematics,2007,(special issue):81-86.
  • 2Lee Y S. Stability of a quadratic functional equation in the spaces of generalized functions[J].Journal of Inequalities and Applications,2008.210615.
  • 3Chung J. Stability of functional equations in the space of distributions and hyperfunctions[J].Journal of Mathematical Analysis and Applications,2003.177-186.
  • 4Hormander L. The Analysis of Linear Partial Differential Operator I[M].Beilin:Springer-Verlag,1983.
  • 5Schwartz L. Theorie Des Distributions[M].Paris.Hermann,1966.
  • 6Matsuzawa T. A calculus approach to hyperfunctions Ⅲ[J].Nagoya Mathematical Journal,1990.133-153.
  • 7Matsuzawa T. A calculus approach to hyperfunctions Ⅲ[J].Nagoya Mathematical Journal,1990.133-153.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部