期刊文献+

基于空间分布支持向量机的图像分割

Image segmentation based on SVM using spatial patterns
下载PDF
导出
摘要 利用模糊聚类与支持向量机结合的方法,将图像的空间分布信息作为支持向量机的特征分量,并用模糊聚类获得的分类结果作为支持向量机的初始训练样本对图像的所有像素点进行分类,同一类中的像素点形成一个分割区域,以此获得图像分割.实验表明,该方法获得的图像分割效果较好,在一定程度上解决了特征维数过大所导致的维数灾难问题. We propose a new hybrid methods for image segmentation that base on support vector maching(SVM) combined with C-mean fuzzy clustering.This method spatial pattern information is used as component characteristics of the SVM,and the classification results from fuzzy clustering are used as the initial samples of the SVM.Then the pixels of the image are classified by SVM and the pixels in the same class form a segmental region.The experimental results show that the new methods combing fuzzy clustering and SVM can get better results and the error ratio caused by the segmentation is decreased.
作者 杨伟
出处 《延边大学学报(自然科学版)》 CAS 2012年第1期83-86,共4页 Journal of Yanbian University(Natural Science Edition)
关键词 模糊聚类 支持向量机 图像分割 空间分布 fuzzy clustering support vector machines image segmentation spatial patterns
  • 相关文献

参考文献12

  • 1林瑶,田捷.罗希平.图像分割方法综述[C]//全国信息与自动化技术推广应用大会论文集.北京:中国自动化学会,2001:86-97.
  • 2甄文智,范九伦,谢维信.基于二维直方图的图像模糊聚类分割新方法[J].计算机工程与应用,2003,39(15):86-88. 被引量:14
  • 3Clausi D A. K-means Iterative Fisher (KIF) unsu- pervised clustering algorithm applied to image tex- ture segmentation[J]. Pattern Recognition, 2002 (35) :1959-1972.
  • 4Xia Yong, Feng Dagan, Wang Tianjiao, et al. Image segmentation by clustering of spatial patterns[J]. Pattern Recognition Letters, 2007(28) : 1548-1555.
  • 5Boser B, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers[C] // Proceedings of the 5th Annual Workshop on Computational I.earning Theory. Pittsburgh: ACM Press, 1992:141-152.
  • 6Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995,20(3) :273-297.
  • 7Seholkopf B, Burges C, Vapnik V. Extracting sup- port data for a given task[C] // Proceedings of First International Conference on Knowledge Discovery & Data Mining. Menlo Park= AAAI Press, 1995: 262- 267.
  • 8Vapnik V. Statistical I.earning Theory[M].许建华,张学工,译.北京:电子工业出版社.2004:324-360.
  • 9付岩,王耀威,王伟强,高文.SVM用于基于内容的自然图像分类和检索[J].计算机学报,2003,26(10):1261-1265. 被引量:54
  • 10Hsu C W. i.in C J. A comparison of melhods for muhi-class support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13 (2) : 415-425.

二级参考文献21

  • 1K S Fu,J K Mui.A survey on image segmentation[J].Pattem Recognition, 1981 ; ( 13 ) :3-6.
  • 2N K Pal,S K Pal.A review on image segmentation techniques[J]. Pattern Recognition, 1993 ;26(9) : 1277-1294.
  • 3J C Bezdek.Pattern recognition with fuzzy objective function algorithms[M].New York : Plenum Press, 1981.
  • 4R L Cannon,J Dave,J C Bezdek.Efficient implementation of fuzzy cmeans clustering algorithms[J].IEEE Trans, 1986;PAMI-8(2) :248-255.
  • 5Burkhardt H, Siggelkow S. Invariant features for discriminating between equivalence classes. In:Nonlinear Model-based Image Video Processing and Analysis. NY: John Wiley and Sons,2000.
  • 6Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.Cambridge, Mass: MIT Press, 2002.
  • 7Vapnik V N. The Nature of Statistical Learning Theory. NewYork: Springer-Verlag, 2000.
  • 8Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods—Support Vector Learning. Cambridge, MA: MIT Press, 1999.
  • 9Smeulders A, Worring M et al. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12) : 1349~ 1380.
  • 10Flickner M et al. Query by image and video content: The QBIC system. IEEE Computer, 1995,28(9) : 23 ~32.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部