期刊文献+

基于RBF神经网络的ZGMn13堆焊焊条的设计

The Design of Hardfacing Electrode about ZGMn13 Based on Bayesian Neural Networks
下载PDF
导出
摘要 提出了一种基于RBF神经网络的CaO-CaF2-SiO2渣系ZGMn13堆焊焊条配方优化设计方法.利用实验采集的数据对网络进行训练,以加工硬化后的硬度为优化目标,得到最优的焊条配方.实验结果表明:优化后熔敷金属的动载加工硬化性能和静载加工硬化性能良好. To design a kind of hardfacing electrode about ZGMn13, a method of optimization design about electrode formulation with CaO-CaF2-SiO2 slag system is proposed based on RBF neural networks. The networks were trained with the data collected from experiments. Optimal formulation of electrode was achieved when the hardness after work hardening was considered as the optimal target. The results of the experiment show good performances of both dynamic load hardening and static load hardening.
作者 刘政 周吉智
出处 《常熟理工学院学报》 2012年第2期100-103,共4页 Journal of Changshu Institute of Technology
关键词 RBF神经网络 优化设计 堆焊焊条 ZGMN13 加工硬化 RBF neural network optimization design hardfacing electrode ZGMn 13 work hardening
  • 相关文献

参考文献6

二级参考文献9

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部