期刊文献+

静电纺丝制备具有浸润性梯度的聚酰亚胺纳米纤维膜 被引量:3

Preparation of Polyimide Nanofiber Membrane with Gradient Wettability by Electrospinning
下载PDF
导出
摘要 采用高压静电纺丝技术,在非对称异型电极上制备得到放射状聚酰亚胺(PI)纳米纤维膜.采用环境扫描电子显微镜(ESEM)观察了PI膜的微观形貌以及纳米纤维的排列状态;采用接触角测量仪研究了水滴浸润性的变化;采用高敏感性力学微电力学天平测量了水滴的黏附力,分析了微观形貌变化与水滴浸润性质和黏附性质的关系.结果表明,该PI纳米纤维膜沿着非对称异型电极三角电极至弧型电极方向纤维排列由密到疏,呈放射状,具有独特的微结构梯度;整个纤维膜上的PI纳米纤维直径均一且具有光滑均匀表面,纤维与纤维之间的距离约为几微米到几十微米.由于PI纳米纤维膜所具有的独特的微结构梯度,致使沿着微结构梯度方向水滴的接触角(从超疏水到疏水)和黏附力(从低黏附到高黏附)均表现出梯度变化的特征. Radial polyimide(PI) nanofiber membrane was prepared on an asymmetric electrode by electrospinning.The morphology and arragement of the nanofiber on the PI membrane were observed by environmental scanning electron microscope(ESEM).The wettability was characterized by the apparent contact angle and the surface adhesive effect was characterized by the high-sensitivity microelectromechanical balance system.The effect of the microstructures on the contact angle and adhesive force was analyzed.The experimental results show that the PI nanofibers exhibit novel gradient microstructures.Particularly,the PI nanofibers were in a radial pattern from dense to sparse along the direction of triangular electrode to curved electrode.The diameter of the PI nanofibers was uniform and their surfaces were smooth.The distance between the adjacent fibers was from a few microns to tens of microns.The unique gradient microstructure of PI nanofiber membrane results in the gradient density of the surface chemical substance and they are crucial to the gradient changes of the contact angle and adhesive force.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第5期1090-1094,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20901006) 中央高校基本业务科研费专项资金(批准号:YWF-10-01-B16)资助
关键词 梯度微观结构 聚酰亚胺 纳米纤维膜 静电纺丝 梯度润湿性 Gradient microstructure Polyimide Nanofiber membrane Electrospinning Gradient wettability
  • 相关文献

参考文献19

  • 1Choi S. H., Newby B. Z.. Langmuir[J]. 2003, 19(18) : 7427-7435.
  • 2Plummer S. T., Bohn P. W.. Langmuir[J]. 2002, 18(10) : 4142-4149.
  • 3Daniel S. , Chaudhury M. K. , Chert J. C.. Science[J]. 2001,291(5504) : 633-636.
  • 4JIANGLei(江雷),FENGLin(冯琳).仿生智能纳米界面材料[M],Bei.jing:ChemicalIndustryPress,2007:97.
  • 5Greenspan H. G.. J. Fluid. Mech. [J]. 1978, 84(1) : 125-143.
  • 6Chaudhury M. K. ,Whitesides G. M.. Science[J]. 1992, 256(5063) : 1539-1541.
  • 7ZhangJ. L., XueL. J., HanY. C.. Langrnuir[J]. 2005, 21(1): 5-8.
  • 8Lu X. Y., Zhang J. L., Zhang C. C., Han Y. C.. Macromol. Rapid Commun.[J]. 2005, 26(8): 637-642.
  • 9Yu X. , Wang Z. Q. , Jiang Y. G. , Zhang X.. Langmuir[J~ , 2006, 22(10): 4483-4486.
  • 10Zhang J. L., LiJ., HanY. C.. Macromol. Rapid Commun. [J]. 2004,25(11): 1105-1108.

二级参考文献35

  • 1张亚南,夏帆,王女,冯琳.大面积超疏水性纳米结构碳膜的制备与表征[J].高等学校化学学报,2007,28(3):568-570. 被引量:9
  • 2黄绘敏,李振宇,杨帆,王威,王策.静电纺丝法制备超细聚苯乙烯纳米纤维[J].高等学校化学学报,2007,28(6):1200-1202. 被引量:25
  • 3周险峰,赵勇,曹新宇,薛燕峰,许大鹏,江雷,苏文辉.静电纺丝法制备SrTiO_3多晶微纳米纤维[J].高等学校化学学报,2007,28(7):1220-1222. 被引量:4
  • 4Eakin J. N. , Amimori I. , Crawford G. P.. Proc. of SPIE. [ J], 2003, 5213:283-288
  • 5Aphonin O. A. , Panina Y. U. , Pravdin A. B. , et al.. Liq. Cryst. [J].1993, 15:395-407
  • 6Yao Y. F. , Gu Z. Z. , Zhang J. Z. , et al.. Adv. Mater. [J].2007, 19:3707-3711
  • 7Teo W. E., Ramakrishna S..Nano. Techn.[J],2005, 16:1878-1882
  • 8Sundaray B. , Subramanian V. , Natarajan T. S. , et al.. Appl. Phys. Lett. [J] , 2004, 84:1222-1224
  • 9Theron A. , Zussman E. , Yarin A. L.. Nano. Techn. [J], 2001, 12:384-388
  • 10Katta P. , Alessandro M. , Ramsier R. D. , et al.. Nano. Lett. [J] , 2004, 4:2215-2218

共引文献62

同被引文献77

  • 1陆赵情,张美云,王志杰,吴养育,代攀.芳纶纸基复合材料研究进展及关键技术[J].宇航材料工艺,2006,36(6):5-8. 被引量:13
  • 2Darvizeh M, Darvizeh A,Rajabi H, et al. Free vibration analysis of dragonfly wings using finite element method [J]. The International Journal of Multiphysics, 2009,3 (1):101 -110.
  • 3Khila A, Abouheif E, Rowe L. Evolution of a novel ap pendage ground plan in water striders is driven by chan ges in the hox gene ultrabithorax[J]. PLoS Genetics, 2009,5(7): e1000583.
  • 4Barthlott W,Neinhuis C. Purity of the sacred lotus, or es cape from contamination in biological surfaces[J]. Plan- ta,1997,202:1-8.
  • 5Koch K,Bhushan B, Barthlott W. Multifunctional surface structures of plants: an inspiration for biomimetics[J]. Progress in Materials Science, 2009,54: 137-138.
  • 6Bhushan B,Jung Y,Koch K. Micro-, nano- and hierarchi- cal structures for superhydrophobicity, self cleaning and low adhesion[J]. Philosophical Transactions of the Royal Society A,2009,367: 1631 -1672.
  • 7Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28: 988-994.
  • 8Cassie A, Baxter. Wettability of porous surfaces[J]. Transaction Faraday Society, 1944,44 : 546-551.
  • 9Ma M,Hill R M. Superhydrophobic surfaces[J]. Current Opinion in Colloid & Interface Science, 2006,11 (4): 193 -202.
  • 10Lee W,Jin M,Yoo W, et al. Nanostructuring of a poly- meric substrate with well-defined nanometer scale topog raphy and tailored surface wettability[J]. Langmuir, 2004,20(18): 7665-7669.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部