期刊文献+

拟南芥MPK3、MPK4、MPK6在酵母hog1Δ中的渗透调节作用 被引量:2

Osmoregulation of MPK3,MPK4 and MPK6 from Arabidopsis thaliana in Yeast hog1Δ Mutant
下载PDF
导出
摘要 【目的】研究拟南芥MAPK信号转导途径的关键基因MPK3、MPK4、MPK6的功能,明确其在渗透调节中的作用。【方法】构建拟南芥MPK3、MPK4、MPK6的酿酒酵母表达载体,遗传转化酿酒酵母渗透调节功能丧失的hog1?突变体,筛选得到阳性转化子,并分析其在渗透胁迫下的表型特征。【结果】扩增得到了拟南芥MPK3、MPK4、MPK6的全长cDNA序列,构建了上述3个基因的表达载体,并筛选得到了3个基因的阳性转化子。在1 mol.L-1 KCl、0.3 mol.L-1 LiCl、1 mol.L-1 NaCl、1 mol.L-1 Sorbitol的盐胁迫处理下,阳性转化子生长状态良好,与野生型的表型基本一致,均恢复了hog1?对盐胁迫的抗性。在盐胁迫处理下,hog1?细胞形态异常且体内甘油含量较野生型低,而转化子的形态和体内甘油含量均恢复到正常的表型。【结论】MPK3、MPK4、MPK6均能够使酿酒酵母渗透调节功能丧失突变体hog1?恢复对盐胁迫的抗性,具有渗透调节的功能。 【Objective】The objective of this research is to study MPK3,MPK4 and MPK6 which are the key genes of MAPK signal transduction pathway,and to identify these MAPKs in osmoregulation of Arabidopsis thaliana.【Method】The yeast expression vectors pVT102U-MPK3/MPK4/MPK6 were constructed,and were transformed into the yeast HOG1 null mutant(hog1?),and the positive transformants were characterized by complementation.【Result】 The full length cDNA of MPK3,MPK4 and MPK6 gene was amplified,and then transformed into hog1? of Sacharomyces cerevisiae through yeast expression vector.Under salt stress with 1 mol?L-1 KCl,0.3 mol?L-1 LiCl,1 mol?L-1 NaCl and 1 mol?L-1 sorbitol,the growth of transformants was very well which was almost in accordance with wild type strains,and these genes rescued hog1? to phenotype of wild type which is insensitive to salt stress.Under salt stress,the cell morphology of hog1? was aberrant and its intracellular glycerol concentration was lower than WT,but the morphology and glycerol content of transformants was a normal phenotype.【Conclusion】With function of osmoregulation,MPK3,MPK4 and MPK6 could rescue hog1? from loss of resistance to salt.
出处 《中国农业科学》 CAS CSCD 北大核心 2012年第7期1418-1424,共7页 Scientia Agricultura Sinica
基金 国家自然科学基金项目(31171805 30471126) 河北省自然科学基金项目(C2009000622)
关键词 拟南芥 MAPK 功能互补 渗透调节 Arabidopsis thaliana MAPK complementation osmoregulation
  • 相关文献

参考文献25

  • 1Chen Z, Gibson T B, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb M H. MAP kinases. Chemical Reviews, 2001, 101: 2449-2476.
  • 2Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science, 2005, 10: 339-346.
  • 3Mizoguchi T, Ichimura K, Shinozaki K, Environmental saress response in plants: The role of mitogen-activated protein kinases. Trends in Biotechnology, 1997, 15: 15-19.
  • 4Asai T, Tena G, Plotnikova J, Willmannl M R, Chiul W L, Gomez-Gomez L, Boller T, Ausubell F M, Sheen J. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 2002, 415 977-983.
  • 5Colcombet J, Hirt H. Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. The Biochemical Journal, 2008, 413:217-226.
  • 6Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 2009, 12(4): 421-426.
  • 7MAPK groups. Mitogen-activated protein kinase cascades in plants: A new nomenclature. Trends in Plant Science, 2002, 7: 301-308.
  • 8Rodriguez M C S, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology, 2010, 61: 621-649.
  • 9Droillard M J, Boudsocq M, Barbier-Brygoo H, Lauriere C. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: Activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBSLetters, 2004, 574: 42-48.
  • 10Desikan R, Hancock J T, Ichimura K, Shinozaki K, Neill S J. Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiology, 2001, 126: 1579-1587.

同被引文献37

  • 1杨晓玲,郭守华,杨晴,东方阳,王华方.转BADH基因水稻幼苗抗旱性研究[J].华北农学报,2007,22(3):60-64. 被引量:8
  • 2彭智,安云庆.pPICZα-LL37-Fcγ1重组质粒的构建及其在毕赤酵母GS115中的表达[J].细胞与分子免疫学杂志,2007,23(10):969-972. 被引量:1
  • 3Zasloff M.Antibiotic peptides as mediators of intmte immunity [ J ]. Cu trent Opinion in Immunologv, 1992,4 ( 1 ) :3-7.
  • 4Andreu D, Rivas I,. Animal antinlicrobial peptides : an overview [ J ]. Biopolymers, 1998,47 ( 6 ) :415-433.
  • 5Hancock REW, Sahl HG. Antimicrobial and host- defense peptides as new anti-inferlive therapeulic strategies[ J ]. Natlure Biotechnology, 2006,24 ( 12 ) : 1551 - 1557.
  • 6Yeung ATY, Gellatly SL, Hancock REW. Multifunctional cationic host defence peptides and their clinical applications [ J ]. Cellular and Molecular Life Sciences, 2011,68 ( 13 ) : 2161- 2176.
  • 7Hancock REW, Scott MG.The role of antimicrobial peptides in animal defenses [ J ]. Proceedings of the National Academy of Sciences,2000,97 (16) :8856-8861.
  • 8Huhmark D, Steiner H, Rasmuson T, et al. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia [ J ]. European Journal of Biochemistry, 1980,106( 1 ) :7-16.
  • 9Steiner H, Huhmark D, Engstrom A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity[ J] .Nature, 1981,292 (5820) :246-248.
  • 10Wang Z, Wang G. APD: the antimicrobial peptide database [ J ]. Nucleic Acids Research,2004,32 ( suppl 1 ) : D590- D592.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部