期刊文献+

用临界功率表征多相搅拌槽中搅拌效果 被引量:1

Critical power criterion for characterizing mixing in multiphase stirred vessels
原文传递
导出
摘要 多相搅拌过程中常常根据临界搅拌转速表征搅拌效果。由于各种搅拌桨的功率准数不同,低临界转速的搅拌桨对应的搅拌功耗可能大于高临界转速的搅拌桨,因此,本文提出用临界功率作为表征手段。选取表面曝气和固体悬浮2个典型的多相搅拌过程进行了验证,结果表明:(1)在表面曝气过程中,达到临界曝气时六斜叶下推圆盘涡轮(PBRTD)桨的搅拌功耗比标准Rushton(RT)桨低,相同功耗下PBRTD桨的kLa也更高,与临界曝气转速的判定结果不同,临界功率法认为PBRTD桨更适合作表面曝气桨,这与表面曝气机理的认识相符;(2)下推折叶透平(PBTD)桨和三叶后掠(TBHA)桨的固体颗粒悬浮实验结果也表明TBHA桨的临界离底悬浮转速高但功耗更低,TBHA桨的整体循环能力更强,有利于固体悬浮。 In multiphase processes, the mixing stirred by different impellers in a multiphase stirred tank are generally compared and characterized based on their critical speed. As the power numbers of different impellers differ greatly, the power consumption of the impellers with lower critical speeds may be greater than those with higher critical speeds under the critical conditions. So a new criterion based on critical power is proposed to characterize the mixing in this work. Surface aeration and solid suspension experiments are taken to validate this method and the following results are obtained: (1) In surface aeration, the power consumed by a pitched-bladed disc turbine downflow (PBRTD) impeller is lower than that by a Rushton turbine (RT) impeller under the critical aeration condition, and the volumetric gas-liquid mass transfer coefficient of a PBRTD impeller is higher than that of a RT impeller under the same power consumption. The PBRTD impeller is more suitable for surface aeration than the RT impeller based on the critical power criterion, which is different from the conclusion by the critical speed method, and the flow produced by the PBRTD impeller is more suitable for the surface aeration based on this mechanism. (2) The results of solid suspension stirred by a pitched-bladed turbine downflow (PBTD) impeller and a Three-bladed helical agitator (TBHA) impeller show that the different conelnsions are drawn by using the critical speed method and the critical power method. The TBHA impeller with higher critical impeller speed has lower power consumption, possibly due to that the TBHA impeller brings better flow circulation beneficial for solid suspension. So the solid-suspension ability of the TBHA impeller is assessed to be better than that of the PBTD impeller.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2012年第4期383-386,共4页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(20906090,20990224) 国家杰出青年科学基金资助项目(21025627) 国家重点基础研究发展计划(973)资助项目(2010CB630904) 国家高技术研究发展计划(863)资助项目(2011AA060704) 北京市自然科学基金资助项目(2112038)
关键词 临界功率 临界转速 多相搅拌槽 表面曝气 固体悬浮 : critical power, critical impeller speed, multiphase stirred tank, surface aeration, solid suspension
  • 相关文献

参考文献18

  • 1Tanaka M,Izumi T. Gas entrainment in stirred tank reactors[J].Chemical engineering Research and Design,1987.195-198.
  • 2Yu G Z,Mao Z S,Wang R. A novel surface aeration configuration for improving gas-liquid mass transfer[J].Chinese Journal of Chemical Engineering,2002,(01):39-44.
  • 3Wu H. An issue on application of a disk turbine for gas-liquid mass transfer[J].Chemical Engineering Science,1995,(17):2801-2811.doi:10.1016/0009-2509(95)00122-L.
  • 4Li X Y,Yang C,Yu G Z. Experimental study on surface aerators stirred by triple impellers[J].Industrial and Engineering Chemistry Research,2009,(18):8752-8756.
  • 5Zwietering T N. Suspending of solid particles in liquid by agitators[J].Chemical Engineering Science,1958.244-253.
  • 6Wiedmann J A,Steiff A,Weinspach P M. Experimental investigation of suspension,dispersion,power,gas hold-up and flooding characteristics in stirred gas-solid-liquid systems[J].Chemical Engineering Communications,1980.245-256.
  • 7Chapman C M,Nienow A W,Cooke M. Particle-gas-liquid mixing in stirred vessels.part Ⅰ:particle-liquid mixing[J].Chemical engineering Research and Design,1983.71-81.
  • 8Frijlink J J,Bakker A,Smith J M. Suspension of solid particles with gassed impellers[J].Chemical Engineering Science,1990.1703-1718.
  • 9Rewatkar V B,Raghava Rao K S M S,Joshi J B. Critical impeller speed for solid suspension in mechanically agitated three-phase reactors,1.experimental part[J].Industrial and Engineering Chemistry Research,1991.1770-1784.
  • 10Dylag M,Talaga J. Hydrodynamics of mechanical mixing in a three-phase liquid-gas-solid system[J].International Chemical Engineering,1994.539-551.

二级参考文献2

共引文献2

同被引文献12

  • 1赵静,高正明,包雨云.叶片形状对涡轮桨搅拌槽内尾涡特性的影响(英文)[J].Chinese Journal of Chemical Engineering.2011(02)
  • 2蔡清白,戴干策.两相/三相翼形浆搅拌反应器的泛点研究(英文)[J].Chinese Journal of Chemical Engineering.2010(03)
  • 3Inci Ayranci,Márcio B. Machado,Adam M. Madej,Jos J. Derksen,David S. Nobes,Suzanne M. Kresta.Effect of geometry on the mechanisms for off-bottom solids suspension in a stirred tank[J].Chemical Engineering Science.2012
  • 4J.Wu,Y.Zhu,P. C.Bandopadhayay,L.Pullum,I. C.Shepherd.Solids suspension with axial‐flow impellers[J].AIChE J.2004(3)
  • 5N. Dohi,T. Takahashi,K. Minekawa,Y. Kawase.Power consumption and solid suspension performance of large-scale impellers in gas–liquid–solid three-phase stirred tank reactors[J].Chemical Engineering Journal.2003(2)
  • 6R.P Fishwick,J.M Winterbottom,E.H Stitt.Effect of gassing rate on solid–liquid mass transfer coefficients and particle slip velocities in stirred tank reactors[J].Chemical Engineering Science.2003(3)
  • 7Belma ?zbek,Sevgi Gayik.The studies on the oxygen mass transfer coefficient in a bioreactor[J].Process Biochemistry.2001(8)
  • 8Parag R Gogate,Anthony A.C.M Beenackers,Aniruddha B Pandit.Multiple-impeller systems with a special emphasis on bioreactors: a critical review[J].Biochemical Engineering Journal.2000(2)
  • 9W. Bujalski,K. Takenaka,S. Paoleni,M. Jahoda,A. Paglianti,K. Takahashi,A.W. Nienow,A.W. Etchells.Suspension and Liquid Homogenization in High Solids Concentration Stirred Chemical Reactors[J].Chemical Engineering Research and Design.1999(3)
  • 10N. Dohi,Y. Matsuda,N. Itano,K. Shimizu,K. Minekawa,Y. Kawase.MIXING CHARACTERISTICS IN SLURRY STIRRED TANK REACTORS WITH MULTIPLE IMPELLERS[J].Chemical Engineering Communications.1999(1)

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部