期刊文献+

多巴胺D2受体的同源模建研究

Homology modeling of Dopamine D2 receptor
原文传递
导出
摘要 多巴胺是大脑中含量最丰富的儿茶酚胺类神经递质,主要通过多巴胺受体调控中枢神经系统的多种生理功能,其中多巴胺D2受体与药物成瘾、精神分裂症、帕金森病等多种疾病的发生相关。然而多巴胺D2受体的晶体结构至今尚未解析出来,给相关疾病的药物设计与开发带来困难。本文采用同源模建的方法,用目前与多巴胺D2受体同源性最高的多巴胺D3受体(3PBL)作为模板,构建多巴胺D2受体的三维结构。经过优化和分子动力学模拟,用Profile-3D和Ramachandran plot对模型进行评估,然后用多巴胺D2受体拮抗剂千金藤啶碱(stepholidine,SPD)进行对接验证,证明构建的多巴胺D2受体模型合理、可靠。 Dopamine(DA) is the most abundant catecholaminergic neurotransmitter in the brain.It controls a variety of physiological functions of the central nervous system by Dopamine receptor, and Dopamine D2 receptor has been associated with a variety of neuropathological diseases, such as drug addiction, schizophrenia, Parkinson's disease. But so far, the structure of Dopamine D2 receptor is not available, which limited the design and development of relevent drugs. In this paper, the homology model of Dopamine D2 receptor was developed by using the Dopamine D3 receptor (3PBL) as template, which has the highest sequence identity to D2 receptor. After Optimization and molecular dynamics simulation, the refined model structure was obtained. The fmal refined model was assessed by Profile-3D and Ramachandran plot programs, then verified by docking with stepholidine(SPD). The results show that the Dopamine D2 model which we built is reasonable and reliable.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2012年第4期423-426,共4页 Computers and Applied Chemistry
基金 国家自然科学基金(81073032) 中央民族大学"985工程"项目(MUC98504-14 MU98507-08)
关键词 多巴胺D2受体 同源模建 分子动力学模拟 分子对接 Dopamine D2 receptor, homology modeling, molecular dynamics, molecular docking
  • 相关文献

参考文献1

二级参考文献12

  • 1Fu W, Shen J H, Luo X M, et al. Dopamine D1 receptor agonist and D2 receptor antagonist effects of the natural product (-)- stepholidine: molecular modeling and dynamics simulations. Biophysical Journal, 2007, 93:1431-1441.
  • 2Henri Xhaard, ViUe-Veikko Rantanen, Tommi Nyronen, et al. Molecular evolution of adrenoceptors and dopamine receptors: implications for the binding ofcatecholamines. J Med Chem, 2006, 49:1706-1719.
  • 3Warne A, Serrano-Vega, Baker M, et al. Slructure ofa betal-adrenergic G-protein-coupled receptor. Nature, 2008, 88:454-486.
  • 4Laskowski R, MacArthur M, Moss D, et al. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst, 1993, 26:283-291.
  • 5Chris C, Todd O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 1993, 2(9): 1511-1519.
  • 6Markus Wiederstein and Manfred J Sippl'. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 2007, 35(Web Server issue):W407-W410.
  • 7Sali A, Blundell T L. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol, 1993, 234(3):779-815.
  • 8Case D, Darden T, Cheatham T, et al. AMBER 9 Tech Rep. San Francisco: University of California, 2006.
  • 9Rarey M, Kramer B, Lengauer T, et al. A fast flexible docking method using an incremental construction algorithm. J Mol Biol, 1996, 261 (3):470-489.
  • 10Jin Hui, Xie Zhldong, Susan R, et al. George palmitoylation occurs at eysteine 347 and cysteine 351 of the dopamine D1 receptor. Eur J Pharmacol, 1999, 386(2-3):305-312.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部