期刊文献+

多喷嘴汽-液两相喷射器的工作特性研究 被引量:4

Working Character of Multi Nozzle Steam-liquid Two-phase Ejectors
下载PDF
导出
摘要 对以湿蒸汽为工作流体的多喷嘴汽–液喷射器机制进行研究,利用质量、能量及动量守恒方程建立了喷射器工作特性一维理论模型。模型求解过程中,采用两相临界流均相平衡模型计算单喷射蒸汽喷嘴的临界流速,并利用多喷射速度系数对其修正,得到多喷射蒸汽喷嘴的出口速度;综合考虑Cattadori的壁面力和Howard的喉部压损理论对流动的影响来确定混合室阻力。为验证模型的正确性,设计以湿蒸汽为工作蒸汽的实验台,并采用多喷嘴喷射器作为实验元件。研究结果表明:容积喷射系数随压力比的增大而减小,且增大喷射器的截面比可使容积喷射系数增加,但缩小了喷射器的工作范围;容积喷射系数随蒸汽干度的增大和过冷水温度的升高而减小。理论计算结果与实验值基本相符。 A one-dimensional theoretical model was built to calculate the performance data of multi-nozzle steam-water two-phase ejector by the equations of mass,energy and momentum conservation for calculation of mechanism of multi nozzle steam-liquid two-phase ejector with wet saturated steam as the working fluid.The critical velocity of the single steam nozzle was computed by homogeneous equilibrium model of two-phase critical flow and amended by the multi-steam nozzle speed coefficient,and then the exit velocity of the multi-steam nozzle was obtained,and the resistance of the mixing section was determined by integrating Cattadori's wall forces model and Howard's "throat" pressure loss theory.In order to verify the proposed model,a set of experimental facility was designed with wet saturated steam as the working fluid and a type of multi-nozzle ejector as the experimental unit.The results show that volume entrainment ratio decreases with the increasing of pressure ratio,that the increasing of cross section of the ejector can increase volume entrainment ratio but cut down the working range of the ejector,and that the volume entrainment ratio decreases with the increasing of the steam dryness and sub-cooled water temperature.The computational results of volume entrainment ratio agree well with the experimental data.
出处 《中国电机工程学报》 EI CSCD 北大核心 2012年第14期56-64,共9页 Proceedings of the CSEE
关键词 多喷嘴喷射器 汽-液两相流 容积喷射系数 均相平衡模型 过冷水 干度 multi-nozzle ejector steam-liquid two-phase flow volume entrainment ratio homogeneous equilibrium model sub-cooled water dryness
  • 相关文献

参考文献22

二级参考文献44

  • 1郭朝红,余顺周,蔡静,顾国彪.蒸发冷却电机中汽液两相沿程摩擦阻力的研究[J].中国电机工程学报,2006,26(19):139-144. 被引量:11
  • 2邵树峰,严俊杰,曹岩,刘继平.超音速蒸汽浸没射流与凝结换热的实验研究[J].工程热物理学报,2007,28(1):68-70. 被引量:16
  • 3曹岩,邵树峰,严俊杰,胡党辉.超音速蒸汽浸没射流凝结汽羽形状的实验研究[J].工程热物理学报,2007,28(4):619-621. 被引量:18
  • 4王广军,李少华,李岩峰,章臣樾.强制流动蒸发系统水动力特性的数值分析方法及应用[J].中国电机工程学报,1997,17(1):13-17. 被引量:20
  • 5G. Cattadori, L. Galbiati, L. Mazzocchi, and P. Vanini.A single - stage high pressure steam injector for next generation reactors: test results and analysis[J]. Int. J. of Multiphase Flow, 1995, 591 - 606.
  • 6G Cattadori,L Galbiati,L Mazzocchi,and P Vanini.A Single-stage high pressure steam injector for next generation reactors: test results and analysis[J].Int.J.of Multiphase Flow,1995,591-606
  • 7Cattadori G, Galbiati L, Mazzocchi L,et al. A single-stage high-pressure steam injector for next generation reactors: test results and analysis [J]. International Journal of Multiphase Flow, 1995, 21(4): 591-606.
  • 8Deberne N, Leone J F, Duque A,et al. A model for calculation of steam injector performance [J]. International J of Multiphase Flow, 1999, 25(1): 841-855.
  • 9Narabayashi T, Mizumach W, Mori M. Study on two-phase flow dynamics in steam injector [J]. Nuclear Engineering and Design, 1997, 175(1-2): 147-156.
  • 10Beithou N, Aybar H S. High-pressure steam-driven jet pump: mathematical modeling [J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(7): 693-706.

共引文献77

同被引文献50

  • 1刘继平,严俊杰,陈国强,种道彤.环周进汽两相流喷射升压过程实验研究[J].工程热物理学报,2004,25(S1):63-66. 被引量:6
  • 2沈胜强,曲晓萍,张博.气-液喷射器工作参数的数值模拟[J].太阳能学报,2006,27(1):106-110. 被引量:13
  • 3Shah A, Chughtai I R, Inayat M H. Experimental study of the characteristics of steam jet pump and effect of mixing section length on direct-contact condensation[J] International Journal of Heat and Mass Transfer, 2013 58(1-2): 62-69.
  • 4Narabayashi T, Mizumachi W, Mori M. Study on two phase flow dynamics in steam injectors[J]. Nuclear Engineering andDesign, 1997, 175(1-2): 147-156.
  • 5Varga S, Oliveira A C, Diaconu B. Influence of geometrical factors on steam ejector performance - A numerical assessment[J] . International Journal of Refrigeration, 2009, 32(7): 1694-1701.
  • 6Sriveerakul T, Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results[J]. International Journal of Thermal Sciences, 2007, 46(8): 812-822.
  • 7Sriveerakul T, Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries[J]. International Journal of Thermal Sciences, 2007, 46(8): 823-833.
  • 8Wang X D, Dong J L. Numerical study on the performances of steam-jet vacuum pump at different operating conditions[J] . Vacuum, 2010 , 84(11) : 1341-1346.
  • 9Varga S, Oliveira A C, Diaconu B. Numerical assessment of steam ejector efficiencies using CFD[J]. International Journal of Refrigeration, 2009, 32(6): 1203-1211.
  • 10Wang X D, Dong J L, Wang T, et al. Numerical analysis of spontaneously condensing phenomena in nozzle of steam-jet vacuum pump[J]. Vacuum, 2012, 86(7): 861-866.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部