期刊文献+

基于共同好友数的在线社会网络社区发现算法 被引量:5

Online Social Network Community Structure Detection Algorithm Based on Number of Shared Friends
下载PDF
导出
摘要 为了快速准确地找到在线社会网络的社区结构,提出了一种基于共同好友数和节点邻居信息的社区结构发现算法。该算法以共同好友数最多的两个节点为初始社区,不断寻找与社区连接性最强的节点,并以节点Q值为衡量标准,判断是否将该节点加入到初始社区中,最后根据节点邻居所在初始社区信息确定最终的社区划分。针对两个经典社会网络和人工生成网络数据的实验划分结果表明,该算法是可行和有效的。 To partition online social networks into groups fast and correctly, this paper proposes an algorithm for detecting community structures in online social networks based on shared friends and node neighbors information. By looking for the maximum number of shared friends based on the maximum degree node, the initial community included two nodes is found, and Q value of the node is used to decide whether the node of initial community neighbor is added into the community. The final community structure is decided by the initial community information of node neighbors. Two classical social networks and synthetic datasets are used to test the performance of the algorithm. Experimental results show that the proposed algorithm is viable and effective.
出处 《计算机科学与探索》 CSCD 2012年第5期456-464,共9页 Journal of Frontiers of Computer Science and Technology
基金 中央高校基本科研业务费专项资金No.Q2009022 中国下一代互联网示范工程No.CNGI2008-122~~
关键词 在线社会网络 社区发现 共同好友 局部结构 online social network community detecting shared friends local structure
  • 相关文献

参考文献17

  • 1杨博,刘大有,LIU Jiming,金弟,马海宾.复杂网络聚类方法[J].软件学报,2009,20(1):54-66. 被引量:212
  • 2Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs[J]. Bell System Technical Journal, 1970, 49(1): 291-307.
  • 3Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133.
  • 4Clauset A, Newman M E J, Moore C. Finding community structure in very large networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(6): 066111.
  • 5Guimera R, Amaral LAN. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433(7028): 895-900.
  • 6Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics, 2008(10): 10008.
  • 7Rosvall M, Bergstrom C. Maps of random walks on com-plex networks reveal community structure[J]. Proceedings of the National Academy dfSciences, 2008, 105(4): 1118-1123.
  • 8Fortunato S, Barthelemy M. Resolution limit in community detection[J]. Proceedings of the National Academy of Sciences, 2007,104(1): 36-41.
  • 9Girvan M, Newman ME J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(6): 7821-7826.
  • 10Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Science, 2004, 101 (9): 2658-2663.

二级参考文献56

  • 1Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 2Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 3Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.
  • 4Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382.
  • 5Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826.
  • 6Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900.
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818.
  • 8Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248.
  • 9Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663.
  • 10Palla G, Barabasi AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664-667.

共引文献211

同被引文献98

  • 1于留宝,胡长军,苏林晗.基于MapReduce的微博文本采集平台[J].计算机科学,2012,39(S3):143-145. 被引量:5
  • 2任永功,于戈.数据可视化技术的研究与进展[J].计算机科学,2004,31(12):92-96. 被引量:56
  • 3刘伟,孟小峰,孟卫一.Deep Web数据集成研究综述[J].计算机学报,2007,30(9):1475-1489. 被引量:136
  • 4张素智,刘放美.基于矩阵约束法的中文分词研究[J].计算机工程,2007,33(15):98-100. 被引量:11
  • 5Scott J. Social Network Analysis: A Handbook. London: Sage Publications, 2000.
  • 6Ceren Budak, Divyakant Agrawal, Amr El Abbadi. Struc tural trend analysis for online social networks. Proceedings of the VLDB Endowment, 2011, 4(10) : 101-111.
  • 7Guo Jing-Feng, Zhang Chun-Ying. Attribute graph and its structure. ICICExpress Letters, 2011, 5(8)- 2611 -2616.
  • 8Zhang Chun-Ying, Guo ling-Feng, Research on random walk rough matching algorithm of attribute sub graph. Advanced Materials and Computer Science, 2011, 474(4) : 297-302.
  • 9Zhang Chun-Ying, Liang Rui-Tao. Set pair community situa- tion analysis and dynamic mining algorithms of web social network. ICICExpressLetters, 2011, 5(12):4519-4524.
  • 10Shiga M, Takigawa I, Mamitsuka H. A spectral clustering approach to optimally combining numerical vectors with a modular network//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2007:647- 656.

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部