期刊文献+

基于主动-被动法对电光双稳态系统的混沌控制和同步研究 被引量:3

Chaos Control and Synchronization in Electrical-Optical Bistable Systems Through Active-Passive Method
原文传递
导出
摘要 将主动-被动同步法改进后,用于对长延迟状态下电光双稳态系统进行混沌控制和同步研究,分别采用单向驱动方法和驱动-耦合方法研究电光双稳态系统的混沌控制和同步。数值模拟表明,在适当参数条件下应用单向驱动方法,驱动系统可以将响应系统控制到各周期状态,且驱动系统的状态决定了响应系统的状态;适当选取耦合系数和驱动强度,两种方案都可以实现驱动系统与响应系统之间的混沌同步。从同步效果上来看,驱动-耦合方法所需耦合系数更小,可控的耦合系数范围比较广,同步效果更好。 Chaos control and synchronization in long-delay electrical-optical bistable systems are researched through modified active-passive method. Unidirectional driving method and driving-coupling method are used in the study on chaos control and synchronization, respectively. The results of numerical simulation show that the chaos of driven system is controlled by the driving system through unidirectional driving method. The driven system's periodic state lies on the driving systemrs periodic state. By adjusting the driving intensity and the coupling coefficient, the chaos synchronization is realized between the driven system and the driving system with these two methods. The effects of driving-coupling method are better than those of unidirectional driving method. Driving-coupling method needs less coupling coefficient and has a larger range of effective coupling coefficient.
出处 《激光与光电子学进展》 CSCD 北大核心 2012年第5期149-154,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(10975047)资助课题
关键词 非线性光学 电光双稳态 单向驱动方法 驱动-耦合方法 混沌控制 混沌同步 nonlinear optics electrical-optical bistability unidirectional driving method driving-coupling method chaos control~ chaos synchronization
  • 相关文献

参考文献11

二级参考文献141

共引文献29

同被引文献41

  • 1任海鹏,刘丁,韩崇昭.基于直接延迟反馈的混沌反控制[J].物理学报,2006,55(6):2694-2701. 被引量:21
  • 2R.S.Tucker.The role of optics in computing[J].Nature Photon.,2010,4(7): 405.
  • 3H.J.Caulfield,S.Dolev.Why future supercomputing requires optics[J].Nat.Photonics,2010,4(5): 261-263.
  • 4D.Woods,T.J.Naughton.Optical computing: photonic neural networks[J].Nature Phys.,2012,8(4): 257-259.
  • 5M.Lukoeviius,H.Jaeger.Reservoir computing approaches to recurrent neural network training[J].Computer Science Review,2009,3(3): 127-149.
  • 6M.C.Ozturk,D.Xu,J.C.Principe.Analysis and design of echo state networks[J].Neural Computation,2007,19(1): 111-138.
  • 7W.Maass,T.Natschlager,H.Markram.Real-time computing without stable states: a new framework for neural computation based on perturbations[J].Neural Computation,2002,14(11): 2531-2560.
  • 8D.Verstraeten,B.Schrauwen,M.D′Haene et al..An experimental unification of reservoir computing methods[J].Neural Networks,2007,20(3): 391-403.
  • 9M.Lukoeviius,H.Jaeger,B.Schrauwen.Reservoir computing trends[J].KI-Künstliche Intelligenz,2012,26(4): 365-371.
  • 10A.Argyris,D.Syvridis,L.Larger et al..Chaos-based communications at high bit rates using commercial fibre-optic links[J].Nature,2005,438(7066): 343-346.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部