期刊文献+

低氮胁迫下水稻剑叶转录因子表达变化 被引量:2

Expression of Transcription Factors of Rice Flag Leaf under Low Nitrogen Stress
下载PDF
导出
摘要 利用Agilent 4×44K芯片全基因组研究低氮胁迫下,2个不同叶绿素含量水稻齐穗期剑叶的转录因子相关基因表达的变化。结果表明,低氮处理与对照相比,超绿水稻沈农196(SN196)剑叶共有53个转录因子相关基因表达发生变化(35个在转录水平下调表达,18个在转录水平上调表达)。丰锦剑叶有27个转录因子相关基因表达发生变化(21个在转录水平下调表达,6个在转录水平上调表达)。低氮胁迫响应转录因子相关基因表现出品种(系)特异性,超绿水稻SN196有48个特异响应,丰锦有22个特异响应。两个水稻品种(系)低氮胁迫响应的转录因子相关基因有5个重叠,其中1个在转录水平上调表达,4个下调表达。低氮胁迫下,水稻剑叶转录因子相关基因的表达发生变化,不同叶绿素含量水稻品种(系)既表现特异性,也存在部分重叠。两个水稻的低氮胁迫响应转录因子基因在染色体上的分布存在差异。 The expression changes of transcription factor genes in two rice cultivars with different chlorophyll content were analyzed under low nitrogen stress by the Agilent rice genome array. The results showed that the expression levels of 53 transcription factor genes (35 down-regulated genes and 18 up-regulated at the transcription level) in flag leaf of super-green rice Shennong 196(SN196) and 27 (21 down-regulated and 6 up-regulated at the transcription level) in flag leaves of Toyonishiki were affected by low nitrogen stress. 48 genes from SN196 and 22 from Toyonishiki were cultivar-special in response to low nitrogen stress. There were five transcription factor genes in response to low nitrogen stress in SN196 and Toyonishiki, with 1 up-regulated and 4 down-regulated at the transcription level, respectively. Expression of transcription factor genes were affected by low nitrogen stress in flag leaf, and there were genes of cultivar special-response as well as overlap between SN196 and Toyonishiki, respectively. Distribution of low nitrogen stress regulating genes on the rice chromosomes of the two cultivars was different.
出处 《中国水稻科学》 CAS CSCD 北大核心 2012年第3期275-282,共8页 Chinese Journal of Rice Science
基金 公益性行业(农业)科研专项经费资助项目(nyhyzx07-001)
关键词 水稻 剑叶 基因芯片 转录因子 rice flag leafs microarray transcription factor
  • 相关文献

参考文献34

  • 1Koutroubas S D, Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in indica and japonica rice under mediteranean conditions. Field Crops Res, 2003, 83:251 260.
  • 2Inthapanya P, Sipaseuth, Sihavong P, et al. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non- fertilised conditions. Field Crops Res, 2000, 65 : 57-68.
  • 3Mac T. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant &Soil, 1997, 196(2): 201-210.
  • 4Chen W, Provart N J, Glazebrook J, et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 2002, 14:559 574.
  • 5Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature= Differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3: 217-223.
  • 6Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a sin gle stress-inducible transcription factor. Nat Biotechnol, 1999, 17: 287-291.
  • 7Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidop- sis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280:104 106.
  • 8Nover L,Bharti K,Doring P, et al. Arabidopsis and the heatstress transcription factor world: How many heat stress transcription factors do we need? Cell Stress Chaperon, 2001, 6: 177-189.
  • 9Singh K B, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curt Opin Plant Biol, 2002, 5: 430-436.
  • 10Maleck K, Levine A,Eulgem T, et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet, 2000, 26: 403-410.

二级参考文献87

共引文献128

同被引文献47

  • 1秦捷,王武,左开井,唐克轩.AP2基因家族的起源和棉花AP2转录因子在抗病中的作用[J].棉花学报,2005,17(6):366-370. 被引量:14
  • 2Wang G, Zhu Q G, Meng Q W, Wu C G. Transcript profiling during salt stress of young cotton (Gossypium hirsutum) seedlings via Solexa sequencing. Acta Physiol Plant, 2012, 34: 107–115.
  • 3Wu J, Zhang Y L, Zhang H Q, Huang H, Folta K M, Lu J. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol, 2010, 10: 234.
  • 4Yu S C, Zhang F L, Yu Y J, Zhang D S, Zhao X Y, Wang W H. Transcriptome profiling of dehydration stress in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) by tag sequencing. Plant Mol Biol Rep, 2012, 30: 17–28.
  • 5Pang T, Ye C Y, Xia X L, Yin, W L. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Gene, 2013, 14: 488–503.
  • 6Shan X H , Li Y D, Jiang Y, Jiang Z L, Hao W Y, Yuan. Y P. Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing. Plant Mol Biol Rep, 2013, 31: 1485–1491.
  • 7Andrew J C, Liu D C, Ramil M, Yue I C H, Rachid S. Transcriptome profiling of leaf elongation zone under drought in contrasting Rice cultivars. PloS One, 2013, 8: e54537.
  • 8Chen J H, Song Y P, Zhang H, Zhang D Q. Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Mol Biol Rep, 2013, 31: 946–962.
  • 9Wang Y, Xu L, Chen Y L, Shen H, Gong, Y Q, Cecilia L, Liu L W. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing. PloS One, 2013, 8: e66539.
  • 10Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Natl Meth, 2008, 5: 621–628.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部