期刊文献+

利用oligo芯片技术鉴定橡胶树死皮相关基因 被引量:4

Identification of Genes Associated with Tapping Panel Dryness in Hevea brasiliensis Using Oligonucleotide Microarrays
下载PDF
导出
摘要 橡胶树死皮(Tapping Panel Dryness,TPD)是天然橡胶单产提高的主要限制因子之一,给橡胶种植业带来严重危害。本研究利用定制橡胶树oligo芯片,通过提取死皮和健康橡胶树胶乳总RNA,标记并反转录成cDNA后与橡胶树oligo芯片进行杂交鉴定TPD相关基因,利用RT-PCR技术对芯片结果进行验证。对芯片数据分析结果显示,以2倍标准在死皮与健康橡胶树间筛选到26个差异表达基因,其功能涉及橡胶生物合成、细胞程序性死亡、细胞抗性及防御反应、活性氧代谢、DNA甲基化、泛素-蛋白酶体、信号传导、蛋白质合成、加工及转运等调控途径。进一步的RT-PCR验证结果表明,随机选取12个基因的表达模式均与芯片结果一致。本研究为大规模鉴定TPD相关基因和揭示TPD发生分子机制奠定了基础。 Tapping panel dryness(TPD)is one of the main limiting factors for increasing the yield of natural rubber,and causes serious economic loss to the rubber production.In this research,the genes associated with TPD were identified by oligonucleotide microarrays hybridized with the latex from TPD and healthy rubber trees,and validated with RT-PCR method.The results from microarray analyses showed that 26 genes were differentially expressed between the TPD and healthy rubber trees.The 26 differentially expressed genes were classified into the following functional categories:rubber biosynthesis,programmed cell death,stress/defense response,metabolism of reactive oxygen species,DNA methylation,ubiquitin-proteasome pathway,cellular communication and signaling,and protein synthesis,process and transport,etc.In addition,the expression patterns of 12 differentially expressed genes randomly selected were further validated by RT-PCR analyses.This research laid foundations for identifying genes related to TPD on large scale and revealing the molecular mechanism of TPD in rubber tree.
出处 《热带作物学报》 CSCD 北大核心 2012年第2期296-301,共6页 Chinese Journal of Tropical Crops
基金 国家自然科学基金“利用分子生物学方法研究橡胶树死皮发生分子机制”(No.30960310) 海南省自然科学基金“橡胶树死皮相关基因芯片开发与应用”(No.310072) 中国热带农业科学院橡胶研究所基本科研业务费专项“橡胶树死皮发生关键基因HbTCTP功能研究”(No.1630022011024)
关键词 橡胶树 死皮 oligo芯片 TPD相关基因 RT-PCR Hevea brasiliensis Tapping Panel Dryness Oligonucleotide microarrays TPD-related genes RT-PCR
  • 相关文献

参考文献8

  • 1Kunstmann B, Osiewacz H D. Over-expression of an S- adenosylmethionine-dependent methyhransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions[J]. Aging Cell, 2008, 7(5): 651-662.
  • 2Venkatachalam P, Thulaseedharan A, Raghothama K G. Molecular identification and characterization of a gene associated with the onset of tapping panel dryness(TPD)syndrome in rubber tree(Hevea brosiliensis Muell.)by mRNA differential display[J]. Molecular Biotechnology, 2009, 41(1) : 42-52.
  • 3Perez-Amador M A, Leon J, Green P J, et al. Induction of the arginine decarb9xylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis[J]. Plant Physiol, 2002, 130(3): 1 454-1 463.
  • 4Chen S C, Peng S Q, Huang G X, et ol. Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness )syndrome in Hevea brasiliensis[J]. Plant Mol Biol, 2002, 51(1): 51-58.
  • 5Venkatachalam P, Thulaseedharan A, Raghothama K G. Identification of expression profiles of tapping panel dryness (TPD)associated genes from the latex of rubber tree (Hevea brasiliensis Muell. Arg)[J]. Planta, 2007, 226(2): 499-515.
  • 6Moon J, Parry G, Estelle M. The ubiquitin-proteasome pathway and plant development[J]. Plant Cell, 2004, 16(12): 3 181-3 195.
  • 7范思伟,杨少琼.巴西橡胶死皮病的概念、假说和发病机理[J].热带作物研究,1991(2):73-80. 被引量:22
  • 8Chunmin Ge,Xia Cui,Yonghong Wang,Yuxin Hu,Zhiming Fu,Dongfen Zhang,Zhukuan Cheng,Jiayang Li.BUD2,encoding an S-adenosylmethionine decarboxylase,is required for Arabidopsis growth and development[J].Cell Research,2006,16(5):446-456. 被引量:15

二级参考文献59

  • 1Walden R, Cordeiro A, Tiburcio AF. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 1997; 113:1009-1013.
  • 2Tonon G, Kevers C, Gaspar T. Changes in polyamines, auxins and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoots: an auxin-independent rooting model. Tree Physiol 2001; 21:655-663.
  • 3Galston AW, Sawhney RK. Polyamines in plant physiology. Plant Physiol 1990; 94:406-410.
  • 4Mad Arif SA, Taylor MA, George LA, et al. Characterization of the S-adenosylmethionine decarboxylase (SAMDC) gene of potato. Plant Mol Biol 1994; 26:327-338.
  • 5Kumar A, Taylor M, Mad Arif S, Davies H. Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J 1996; 9:147-158.
  • 6Dresselhaus T, Barcelo P, Hagel C, Lorz H, Humbeck K. Isolation and characterization of a Tritordeum cDNA encoding S-adenosylmethionine decarboxylase that is circadian-clock-regulated.Plant Mol Biol 1996; 30:1021-1033.
  • 7Tian AG, Zhao JY, Zhang JS, Gai JY, Chen SY. Genomic characterization of the S-adenosylmethionine decarboxylase genes from soybean. Theor Appl Genet 2004; 108:842-850.
  • 8Franceschetti M, HanfreyC, Scaramagli S, et al. Characterization of monocot and dicot plant S-adenosyl-l-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. Biochem J 2001; 353:403-409.
  • 9Mou Z, He Y, Dai Y, Liu X, Li J. Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell 2000; 12:405-418.
  • 10Bechtold N, Pelletier G. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 1998; 82:259-266.

共引文献35

同被引文献73

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部