期刊文献+

粗糙逻辑的计量化研究 被引量:1

Quantitative analysis of rough logic
下载PDF
导出
摘要 将计量化方法引入到粗糙逻辑的研究当中,在一种典型的粗糙逻辑LR中引入了公式的粗糙真度概念。在此基础上,提出了公式之间的粗糙相似度、粗糙伪距离等概念,得到了粗糙逻辑度量空间。在粗糙度量空间中提出了两种不同的粗糙近似推理模式。这一结果实现了粗糙集与计量逻辑学这两种不同的处理近似问题理论的融合,同时对进一步丰富基于粗糙集的近似推理有一定启示。 Rough set theory is a mathematical tool to deal with inexactness or uncertainties.As an important branch of rough set theory,rough logic has attracted more and more attention from scholars in this community.The present paper aims to introduce the quantitative approach to the study of rough logic for the first time.The concept of rough truth degree is proposed within the context of a representative rough logic LR.Based upon the fundamental notion,the concepts of rough similarity degree and rough distance between any two formulae are also proposed.Correspondingly,the desired rough logic metric space is therefore obtained.Moreover,two kinds of rough reasoning modes within the context of rough logic metric space are proposed.The results obtained in this paper helps to syncretize quantitative logic and rough set theory,which are regarded as two different theories concerning with approximations.It may bring enlightenment to the study of approximate reasoning based on rough set theory.
出处 《计算机工程与应用》 CSCD 2012年第14期44-50,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61103133) 陕西省教育厅科研计划项目(No.11JK0473) 西安石油大学青年科技项目(No.YS29030909)
关键词 粗糙逻辑 粗糙真度 粗糙相似度 粗糙伪距离 粗糙度量空间 rough logic rough truth degree rough similarity degree rough pseudo distance rough metric space
  • 相关文献

参考文献9

  • 1Pawlak Z.Rough sets[J].Int J Comp Inf Sci, 1982, 11: 341-356.
  • 2Pawlak Z.Rough logic[J].Bull Polish Acad Sc(Tech Sc), 1987,35(5/6) :253-258.
  • 3Chakraborty M K, Banerjee M.Rough consequence[J].Bull Polish Acad Sc(Math), 1993,41(4) :299-304.
  • 4Banerjee M, Chakraborty M K.Rough consequence and rough algebra[C]//Intemational Workshop on Rough Sets and Knowledge Discovery.London: Springer-Vedag, 1994: 196-207.
  • 5Banerjee M.Logic for rough truth[J].Fundamenta Infor- maticae, 2006,71 : 139-151.
  • 6Wang G J,Zhou H J.Quantitative logic[J].Information Sci- ences, 2009, 179 (3) : 226-247.
  • 7Blackburn P, Rijke M, Venema Y.Modal logic[M].Cam- bridge:Cambridge University Press,2001.
  • 8Yao Y Y, Lin T Y.Generalization of rough sets using modal logics[J].Intelligent Automation and Soft Comput- ing, 1996,2(2) :103-120.
  • 9WANG GuoJun,DUAN QiaoLin.Theory of (n) truth degrees of formulas in modal logic and a consistency theorem[J].Science in China(Series F),2009,52(1):70-83. 被引量:13

二级参考文献5

共引文献12

同被引文献16

  • 1王国俊,秦晓燕,周湘南.一类二值谓词逻辑中公式的准真度理论[J].陕西师范大学学报(自然科学版),2005,33(1):1-6. 被引量:23
  • 2Wang G J,Zhou H J.Quantitative logic(I)[J].Information Sciences,2009,179:226-247.
  • 3Wang G J,Leung Yi.Integrated semantics and logic metric spaces[J].Fuzzy Sets and Systems,2003,136(1):71-91.
  • 4Hui X J,Wang G J.Randomized study on classical reasoning mode and its application[J].Science in China(Ser.E),2007,37(6):801-812.
  • 5Jun Li,Yan Zhou.A Quantitative method of n-valued G?del propositional logic[J].Procedia Environmental Sciences,2012,12:583-589.
  • 6She Yanhong.On the rough consistency measures of logic theories and approximate reasoning in rough logic[J].International Journal of Approximate Reasoning,2014,55:486-499.
  • 7Wang Guojun,Qin Xiaoyan,Zhou Xiangnan.An intrinsic fuzzy set on the universe of discourse of predicate formulas[J].Fuzzy Sets and Systems,2006,157:3145-3158.
  • 8Hajek P.Metamathematics of fuzzy logic[M].London:Kluwer Academic Publishers,1998.
  • 9Halmos P R.Measure theory[M].New York:Springer Verlag,1974.
  • 10韩邦合,李永明.计量逻辑学中的近似推理[J].模糊系统与数学,2010,24(5):1-7. 被引量:9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部