期刊文献+

基于学习超分辨率重建中的样本选择方法 被引量:1

Sample selection method for learning-based image super-resolution
下载PDF
导出
摘要 提出一种人脸图像超分辨率重建(Super-Resolution Reconstruction,SRR)的自适应学习样本选择方法。利用局部保持投影(Locality Preserving Projections,LPP)算法的局部保持能力,在人脸图像局部流形上分析其非线性结构特征,并给出了LPP变换向量的数值解法。在LPP的特征空间中动态搜索学习样本,即选择出与输入图像块最为相似的像素块集合。利用选择出的样本通过基于像素块的特征变换法完成超分辨率重建。实验表明,自适应样本选择方法可以快速、有效地选择出少量学习样本,具有良好的图像高频信息复原能力。 This paper presents an adaptive learning sample selection method for face hallucination.The nonlinear structural features of face images are explored on facial local manifolds using Locality Preserving Projections(LPP) algorithm,and the efficient computation method of the transform vectors of LPP is presented.Learning samples are dynamically picked out in the eigen-space of LPP,i.e.,the patch set most similar to the input image patch.The selected samples are used for super-resolution reconstruction by the patch-based eigen-transformation method.Experimental results fully demonstrate that the proposed adaptive sample selection method can fast and efficiently select out a small amount of learning samples,with good reconstruction performance in terms of high-frequency information restoration.
作者 江静 张雪松
出处 《计算机工程与应用》 CSCD 2012年第14期180-184,共5页 Computer Engineering and Applications
基金 国家科技支撑计划项目(No.2006BAK03B00) 北京市自然科学基金资助项目(No.4102060) 中央高校基本科研业务费资助(No.JD1201B)
关键词 样本选择 超分辨率 人脸图像 局部保持投影 sample selection super-resolution face image locality preserving projections
  • 相关文献

参考文献9

  • 1Baker S, Kanade T.Limits on super-resolution and howto break them[J].IEEE TPMI,2002,24: 1167-1183.
  • 2Freeman W T, Jones T R, Pasztor E C.Example-based super-resolution[J].lEEE Trans on Comput Graph Appl. 2002,22( 2 ) :56-65.
  • 3Liu C,Shum H Y,Freeman W T.Face hallucination:the- ory and praetice[J].lJCV,2007,75( 1 ):115-134.
  • 4Wang X G,Tang X O.Hallucinating l:ace by eigentrans- formation[J].lEEE Trans oll Systems,Man,and Cybernet- ics,Part C,2005,35(3) :425-433.
  • 5He X, Niyogi P.Locality prcsclwing projections[C]//Proc Conf Advanccs in Neural lntbrmation Processing Sys- terns, 2004 : 327-334.
  • 6Dede6glu G,Kanade T,August J.High-zoom video hallu- cination by exploiting spatio-temporal regularities[C]// CVPR,2004: 151-158.
  • 7Chakrabarti A,Rajagopalan A NoChellappa R.Super- resolution of face images using kernel PCA-based prior[J]. 1EEE Trans on Multimedia,2007,9(4):888-892.
  • 8Chang H, Yeung D Y, Xiong Y.Super-resolution through neighbor embedding[ C]/ /CVPR , 2004 : 27 5-282.
  • 9Zhuang Y,Zhang J,Wu F.Hallucinating faces:LPH super- resolution and neighbor reconstruction for residue com- pensation[J].Pattern Recognition, 2007,40( 11 ) : 3178-3194.

同被引文献9

  • 1Baker S, Kanade T. Limits on Super-resolution and How to Break Them [J ]. Computer Vision and Pattern Recognition, 2000, 9(2):372-379.
  • 2Hertzmann A, Jacobs CE, Oliver N, et al. Image analogies[C] //Proceedings of Computer Graphics, Annual Conferences Series, ACMSIGGTAPH. Los Angeles, Califomia:[ s.n ], 2001:327-340.
  • 3Freeman WT, Jones TR, Pasztor EC. Example-Based super-resolution [J]. IEEE Computer Graphics and Applications, 2O02,22(2):56-65.
  • 4Baker S, Kanade T. Hallucinating Faces [ C ]//Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recogmition. Grenoble, France:[ s.n. ], 2000:83-88.
  • 5Liu Ce, Shum HY, Zhang Chang, shun. A Two-step Approach to Hallucinating Faces: Global Parametric Model and Local Nonparametric Model [C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai Marriott, Hawaii: [ s.n. ], 2001 : 192-198.
  • 6Samaria F, Hatter A. Parameterisation of a Stochastic Model for Human Face Identification. In: IEEE Workshop on Applications of Computer Vision; 1994. p. 138-142.
  • 7李涛,王晓华,宋桂芹,李军科,闫雪梅.基于学习的彩色人脸图像超分辨率重构研究[J].北京理工大学学报,2010,30(2):193-196. 被引量:5
  • 8马祥,齐春.全局重建和位置块残差补偿的人脸图像超分辨率算法[J].西安交通大学学报,2010,44(4):9-12. 被引量:6
  • 9李涛,王晓华,张超,杜部致,李宇春.基于学习的人脸图像超分辨率重构算法[J].北京理工大学学报,2012,32(4):386-389. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部