期刊文献+

电磁声发射的实验与信号识别研究(英文)

Signal Recognition and Experiment for Electromagnetically Induced Acoustic Emission
下载PDF
导出
摘要 电磁声发射技术是一种新型的无损检测技术,通过对金属部件进行电磁加载会在裂纹处激发出声发射信号,并利用这一现象实现对金属材料的无损检测。本文分析了电磁声发射技术的基本原理与实现过程,采用一种基于波形分析的神经网络模式识别方法,利用小波包变换提取出电磁声发射信号波形的识别特征参数,建立了由10个输入单元、18个隐含单元和单输出组成的人工神经网络识别系统。为了克服BP神经网络收敛速度慢的缺点,提出了一种输入单元数目可变的神经网络改进方法,实验表明该系统能够对有无裂纹板进行快速、准确的识别。 Electromagnetically induced acoustic emission(EMAE) technique is a new nondestructive testing(NDT).It does nondestructive detection with the effect of dynamic electromagnetic loading to generate a stress field stimulating stress waves from the defects.The principle and implementation procedure of the EMAE is analyzed.It adopts the neural network recognition method based on wave analysis.The characteristic parameters of EMAE signal are extracted using wavelet packet transform.The recognition system of back-propagation(BP) network consists of 10 input elements,18 hidden elements and single output.In order to overcome the shortcoming of low constringency speed,this paper proposes a kind of neural network recognition with adaptive number of neurons on the input layer method.The experiment results show it can identify the crack in the metal plate quickly and accurately.
出处 《电工技术学报》 EI CSCD 北大核心 2012年第4期18-23,共6页 Transactions of China Electrotechnical Society
基金 supported by the National Natural Science Foundation of China(51077036) the Natural Science Foundation of Hebei Province(E2012202048,E2011202040) the Research and Development Project of Seience and Technology of Hebei Province(11215648)
关键词 电磁声发射 信号处理 神经网络 信号识别 Electromagnetically induced acoustic emission signal processing neural network signal recognition
  • 相关文献

参考文献10

  • 1刘素贞,杨庆新,金亮,张闯.电磁声发射技术在无损检测中的应用[J].电工技术学报,2009,24(1):23-27. 被引量:17
  • 2Finkel P,Godinez V.Electromagnetic simulation ofthe ultrasonic signal for nondestructive detection offerromagnetic inclusions and flaws[J].IEEE Trans-actions on Magnetics,2004,40(4):2179-2181.
  • 3Kim K B,Yoon D J,Jeong J C,et al.Determiningthe stress intensity factor of a material with anartificial neural network from acoustic emissionmeasurements[J].NDT&E International,2004,37(6):423-429.
  • 4Sasikumar T,RajendraBoopathy S,Usha K M,et al.Failure strength prediction of unidirectional tensile coupons using acoustic emission peak amplitude andenergy parameter with artificial neural networks[J].Composites Science and Technology,2009,69(7-8):1151-1155.
  • 5Kuo C C.Artificial recognition system for defectivetypes of transformers by acoustic emission[J].Expert Systems with Applications,2009,36(7):10304-10311.
  • 6Rajendraboopathy S,Sasikumar T,Usha K M,et al.Neural network prediction of failure strength ofcomposite tensile specimens using acoustic emissioncounts[J].Journal of Non Destructive Testing&Evaluation,2008,7(2):21-26.
  • 7颜威利,杨庆新,汪友华,等.电气工程电磁场数值计算[M].北京:机械工业出版社,2005.
  • 8Velayudham A,Krishnamurthy R,Soundarapandian T.Acoustic emission based drill condition monitoring during drilling of glass/phenolic polymeric compositeusing wavelet packet transform[J].Materials Scienceand Engineering A,2005,412:141-145.
  • 9Oliveira R de,Marques A T.Health monitoring of FRP using acoustic emission and artificial neuralnetworks[J].Computers and Structures,2008,86(3-5):367-373.
  • 10Leone C,Caprino G,de Iorio I.Interpreting acousticemission signals by artificial neural networks topredict the residual strength of pre-fatigued GFRPlaminates[J].Composites Science and Technology,2006,66(2):233-239.

二级参考文献5

  • 1陈中剑,杨庆新.电磁声发射技术研究[J].大众科技,2006,8(6):23-24. 被引量:7
  • 2Finkel P, Godinez V, Miller R. Electromagnetically induced acoustic emission--novel NDT technique for damage evaluation[J].American Institute of Physics Conf. Proc., 2001, 557: 1747-1754.
  • 3张广纯,陆原,李希英,等.电磁超声自动探伤技术:中国,CN1022202C[P].1993-09-22.
  • 4陈苏劲,张广纯,梁杰宇.电磁探伤装置:中国,CN2090061U[P].1991-12-04.
  • 5Finkel P, Godinez V. Numerical simulations of an electromagnetic of the ultrasonic signal for nondestructive detection of ferromagnetic inclusions and flaws[J]. IEEE Transactions on Magnetics, 2004, 40(4): 2179-2181.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部