期刊文献+

机会网络动态社团的预测 被引量:1

Forecasting Dynamic Communities in Opportunistic Networks
下载PDF
导出
摘要 由于人们之间社会关系相对稳定并且存在一定的依赖性,由人携带设备组成的机会网络中会出现节点的聚集现象,从而表现出很好的社团特性.提出一种应用贝叶斯-蒙特卡洛(Bayesian-MCMC)预测机会网络节点社团分配的新方法,并在两个不同地点的机会网络数据集上对该方法进行了评估,实验结果显示,此方法能对机会网络中的社团演变进行预测,达到了很高的准确率,且具有良好的鲁棒性.对机会网络社团快速准确的预测有利于机会网络中节点的管理,消息的传输,资源的分配,并可以为探索由人携带设备组成的机会网络这类场景的移动模型的数学分析提供理论依据. As a result of the relative stability and the dependence of social relations between people,the nodes in opportunistic networks appear clustering phenomena and the opportunistic networks demonstrated good community properties.A new method for predicting the distribution of node′s community,based on Bayesian-Monte Carlo(Bayesian-MCMC),is proposed in this paper.This method is evaluated through opportunistic network′s data collected from two different locations.Experimental results show that this method can detect communities in the opportunistic networks and predict its time evolution,which achieve a high accuracy and high robustness.Quickly and accurately detecting and forecasting the communities in opportunistic networks are beneficial to network node management,message transmission,resources allocation and providing a theoretical background of exploring the mathematical model on opportunistic networks constituted by people carrying equipment.
作者 蔡君 余顺争
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第5期1047-1052,共6页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划项目(2007AA01Z449)资助 国家自然科学基金项目-广东联合基金重点项目(60970146)资助 国家自然科学基金项目(U0735002)资助
关键词 机会网络 动态社团 贝叶斯-蒙特卡洛 复杂网络 吉布斯抽样 opportunistic networks dynamic communities Bayesian-MCMC complex networks Gibbs sampling
  • 相关文献

参考文献25

  • 1Xu Kuang,Yang Guang-hua,Victor O K Li,et al.Detecting dy-namic communities in opportunistic[C].Ubiquitous and FutureNetworks,2009:159-164.
  • 2Raiffa H,Schlaifer R.Applied statistical decision theory[M].Boston:Harvard University,1961.
  • 3Berger-Wolf T Y,Saia J.A framework for analysis of dynamic so-cial networks[C].Proceedings of the Twelfth ACM SIGKDD In-ternational Conference on Knowledge Discovery and Data Mining,2006:523-528.
  • 4Pan H,Chaintreau A,Scott J,et al.Pocket switched networksand human mobility in conference environments[C].Proceedingsof the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Net-working,2005:244-251.
  • 5Edoardo M Airoldi,David M Blei,Stephen E Fienberg,et al.Mixed membership stochastic block models for relational data withapplication to protein-protein interactions[J].Journal of MachineLearning Research,2006,9(6):1981-2014.
  • 6Chi Yun,Zhu Sheng-huo,Song Xiao-dan,et al.Structural and tempo-ral analysis of the blogosphere through community factorization[C].Proceedings of the Thirteenth ACM SIGKDD International Conferenceon Knowledge Discovery and Data Mining,2007:163-172.
  • 7Holand P,Leinhardt S.Local structure in social networks[J].So-cialogical Methodology,1976,7:1-45.
  • 8Eagle N,Pentland A.Reality mining:sensing complex social sys-tems[J].Personal Ubiquitous Computing,2006,10(4):255-268.
  • 9Kemp C,Griffiths T L,Tenenbaum J B.Discovering latent classesin relational data[R].MIT Computer Science and Artificial Intelli-gence Laboratory,2004.
  • 10Chaintreau A,Crowcroft J,Diot C,et al.Pocket switched net-works and the consequences of human mobility in conference envi-ronments[C].ACM Sigcomm 1st Workshop on Delay TolerantNetworking and Applications,2005:244-251.

二级参考文献123

  • 1Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 2Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 3Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.
  • 4Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382.
  • 5Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826.
  • 6Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900.
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818.
  • 8Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248.
  • 9Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663.
  • 10Palla G, Barabasi AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664-667.

共引文献530

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部