期刊文献+

地下水位对陆稻根系生长的影响 被引量:6

Effect of groundwater level on growth and development of upland rice root system
下载PDF
导出
摘要 对不同地下水位下生长的陆稻作了成熟期根系生长特性的研究结果表明 :不同地下水位下生长的陆稻根系垂直分布深度无多大差别 ,均在 0 cm~ 60 cm间 ;根长、根重、根体积、根密度 ,一般随根系垂直分布深度的增加而递减 ;根系总量、各层分布量及各层分布量占总量百分比 ,均随处理水深增加而增加 ,且深根 (30 cm~ 60 cm)的各参数值 ,达差异极显著 ;三种处理的活跃表面积 /总表面积均随垂直深度增加而递减。 The growth and development parameters of upland rice system during the mature period were studied in various groundwater levels. The results were as follows: The vertical distribution depth of upland rice root system in various groundwater levels was not much different, while its depth was generally between 0 cm^60 cm. Root length, root dry weight, root volume and root density decreased gradually with the increase of root system vertical distribution depth. 3. Total quantity of root system, the distribution of every layer and the rate of the distribution of every layer and total quantity of root system increased with the increase of the groundwater depth, and the parameters of deep layer (between 30 cm^60 cm) root had significant difference; the rate of active area and total area of root surface of the three treatment decreased with the increase of root system vertical depth.
出处 《干旱地区农业研究》 CSCD 北大核心 2000年第1期124-128,共5页 Agricultural Research in the Arid Areas
基金 江西省自然科学基金!( 9730 6 3)
关键词 陆稻 地下水位 垂直分布 生理活性 upland rice root system growth and development groundwater level water stress soil moisture
  • 相关文献

参考文献4

二级参考文献66

  • 1McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc 11/tech/final_files/McCullough.pdf.
  • 2Pakbaznia E, Pedram M. Minimizing data center cooling and server power costs. In: Proc. of the 14th ACM/IEEE Int'l Symp. on Low Power Electronics and Design. New York: ACM Press, 2009. 145-150. [doi: 10.1145/1594233.1594268].
  • 3Bash C, Forman G. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In: Proc. of the 14th USENIX Annual Technical Conf. USENIX Association Berkeley, 2007. 138-140. http://dl.acm.org/ citation.cfm?id= 1364414.
  • 4Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in cloud computing: Enabling the future Internet of services. Internet Computing, IEEE, 2013,17(4):18-25. [doi: 10.1109/MIC.2012.69].
  • 5Barbulescu M, Grigoriu RO, Neculoiu G, Halcu I, Sandulescu VC, Niculescu-Faida O, Marinescu M, Marinescu V. Energy efficiency in cloud computing and distributed systems. In: Proc. of the 2013 14th RoEduNet Int'l Conf. on Networking in Education and Research. IEEE, 2013.1-5. [doi: 10.1109/RoEduNet.2013.6714197].
  • 6Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007,35(2):13-23. [doi: 10.1145/1250662.1250665].
  • 7Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 Benchmark. In: Proc. of the 2011 14th IEEE Int'l Symp. on Performance Analysis of Systems and Software (ISPASS). IEEE, 2011. 227-236. Idol: 10.1109/ISPASS.2011.5762739].
  • 8Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768. [doi: 10.10 t 6/j.future.2011.04.017].
  • 9Eeonomou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-System power analysis and modeling for server environments. In: Proc. of the l 4th Int' 1 Syrup. on Computer Architecture. IEEE, 2006, 70-77. http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.84. 1332.
  • 10Lewis AW, Ghosh S, Tzeng NF. Run-Time energy consumption estimation based on workload in server systems. HotPower, 2008, 8:17-21. https://www.usenix.rg/egay/events/htpwer8/teh/fuMapers/ewis/ewis-htm/.

共引文献185

同被引文献91

引证文献6

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部