期刊文献+

全局优化RBF网络的一种新算法 被引量:6

A Novel Algorithm for Global Optimization of RBF Neural Networks
下载PDF
导出
摘要 神经网络的输入变量、隐含层结点以及中心的选择对模型的性能都有重大的影响,以前的研究一般只考虑优化网络的参数或其结点数。为解决这个问题,提出了一种新的全局优化算法来自动选择RBF神经网络的输入变量和结点数目,并同时优化其参数。在提出的算法中,RBF网络的结点数目、输入变量的选择和参数都采用二进制编码,并用遗传算法来优化。为提高算法的性能和收敛速度,在遗传算法优化的同时引入了一种高性能的基于梯度的局部搜索算子(结构化的非线性参数优化方法)来优化RBF网络中的参数。Box-Jenkins煤气炉标准时间序列的预测问题被用来检验算法的性能。实验结果表明,提出的算法可以得到非常"紧凑"的RBF网络,且其性能优于其他一些算法。 The input vector, the number of hidden nodes and the centres of neural networks have significant effects on the modeling performance . The majority of the previous work only focused on determining the parameters of the networks or the number of hidden nodes. In this paper, anovel algorithm is proposed for automatic selection of the number of nodes and the proper input variables, and simultaneously optimizing the parameters of the RBF neural networks. In the proposed algorithm, the nodes, inputs and parameters of the RBF networks are represented in one chromosome and evolved simultaneously by genetic algorithm. To improve the performance of the propose algorithm and accelerate the computational convergence, a gradient - based local search strategy is introduced to optimize the parmeters of the RBF networks. The performance of the presented approach is evaluated by the Box - Jenkins time series prediction problem. It is shown by the simulation results that the proposed algortihm produces parsimonious RBF networks, and obtains better results than some other existing methods.
出处 《控制工程》 CSCD 北大核心 2012年第3期459-461,466,共4页 Control Engineering of China
基金 国家自然科学基金(60974022) 湖南省教育厅科研基金(10C0412)
关键词 RBF神经网络 遗传算法 混合优化方法 RBF neural network genetic algorithm hybrid optimization approach
  • 相关文献

参考文献14

  • 1Broomhead D, Lowe D. Multivariable functional interpolation and a- daptive networks[ J ]. Complex Systems, 1988,2 ( 5 ) :321-355.
  • 2Song A,Lu J. Evolving Gaussian RBF network for nonlinear time series modeling and prediction [ J ]. Electron. Lett., 1998,34 ( 12 ) : 1241-1243.
  • 3Peng J, Li K, Huang D. A hybrid forward algorithm for RBF neural network construction [ J ]. IEEE Trans Neural Networks, 2006, 17 (6) : 1439-1451.
  • 4Harpham C, Dawson C W. The effect of different basis functions on a radial basis function network for time series prediction : a compar- ative study [ J ]. Neurocomputing,2006,69 ( 16 ) : 2161-2170.
  • 5Gholipour A, Araabi B N, Lucas C. Predicting chaotic time series u- sing neural and neurofuzzy models: A comparative study[ J ]. Neu- ral Processing Letter,2006,24(3 ) :217-239.
  • 6Harpham C, Dawson C W. A review of genetic algorithms applied to training radial basis function networks [ J ]. Neural Comput Appl, 2004,13(3) :193-201.
  • 7Zhang G P, Patuwo B E, Hu M Y. A simulation study of artificial neural networks for nonlinear time-series foresting [ J ]. Computers & Operations Research,2001,28 (6) :381-396.
  • 8Panchapakesan C, Palaniswami M, Ralph D,et al C. Effects of mov- ing the centers in an RBF network [ J]. IEEE Trans. Neural Net- works,2002,13 (6) : 1299-1307.
  • 9Peng H, Ozaki T, Haggan-Ozaki V, et al. A parameter optimization method for the radial basis function type models [ J 1. IEEE Trans. Neural Networks,2003,14 (2) :432-438.
  • 10Kim M, Kim C, Lee J. Evolving compact and interpretable Takagi- Sugeno fuzzy models with a new encoding scheme[ J]. IEEE Trans. Systems, Man, and Cybernetics,2006,36 ( 5 ) : 1006 - 1023.

二级参考文献15

  • 1丁宏锴,萧蕴诗,李斌宇,岳继光.基于PSO-RBF NN的非线性系统辨识方法仿真研究[J].系统仿真学报,2005,17(8):1826-1829. 被引量:17
  • 2杨世达,李庆华,阮幼林.改进遗传算法全局收敛性分析[J].计算机工程与设计,2005,26(7):1695-1697. 被引量:14
  • 3邢桂华,朱庆保.基于蚂蚁算法的RBF网络参数的两阶段优化[J].计算机工程与应用,2005,41(27):56-59. 被引量:7
  • 4岳恒,张海军,柴天佑.基于混合粒子群算法的RBF神经网络参数优化[J].控制工程,2006,13(6):525-529. 被引量:15
  • 5Park J, Sandberg I W. Universal approximation using radial basis function networks [ J ]. Neural Compu, 1991, 3 ( 2 ) :246-257.
  • 6Panehapakesan C, Palaniswami M, Ralph D,et al. Effects of moving the centers in an RBF network[J]. IEEE Transactions on Neural Networks, 2002, 13 (6) : 1299-1307.
  • 7Deb K. A population-based algorithm-generator for real-parameter optimization [ J ]. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2005, 9(4): 236-253.
  • 8Pottmann M,Seborg D E.A nonlinear predictive control strategy based on radial basis function modles[J].Computers Chem Engng,1997,21(9):965-980.
  • 9Nam M D,Thanh T C.Approximation of function and its deri-vatives using radial basis function networks[J].Applied Mathematical Modelling,2003,27(3):197-220.
  • 10Stubbings T,Hutter H.Classification of analytical images with radial basis function networks and forward selection[J].Chemometrics and Intelligent Laboratory Systems,1999,49(2):163-172.

共引文献18

同被引文献59

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部