期刊文献+

前轮驱动自行车机器人定车运动的建模与实现 被引量:8

Modeling and Realization of Track Stand Motion for a Bicycle Robot with Front-Wheel Drive
原文传递
导出
摘要 针对前轮驱动自行车机器人原地难以实现定车问题,提出一种简化的力学模型,并研究其部分反馈线性化控制策略.首先,考虑车轮纯滚动条件及定车时车把和车架垂直的特点,推导出前轮驱动角速度和车架航向角速率间的约束关系,并利用拉格朗日方程建立系统的动力学模型.然后,将系统欠驱动的车架横滚角线性化,并选择全部自由度为输出,根据部分反馈线性化原理设计定车运动控制器.仿真控制结果表明,适当地选取控制参数,系统可以在输入驱动力矩不大的情况下快速实现±10°范围内定车.物理样机实验进一步证明,利用所设计的控制器,前轮驱动自行车机器人可仅依靠前轮驱动实现小角度范围的原地定车运动. Considering pure rolling condition and track stand motion's characteristics of front-bar being vertical to frame,nonholonomic constraints between front-wheel's driving angle velocity and frame's yaw angle rotational rate are derived,from which dynamic model is built by Lagrange formulation.With partial feedback linearization method,a track stand motion controller is designed,in which the under-actuated frame rolling angle is linearized and the whole dynamics are taken as output.Simulation of the controller indicates that,under proper parameters,the track stand motion within ±10° rolling angle can be achieved quickly with a small driving torque.Experiment also validates that,with the proposed controller,the front-wheel drive bicycle robot can realized a small rolling angle range of track stand motion only by front-wheel driving torque input.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2012年第2期5-9,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家青年科学基金项目(61105103) 国家自然科学基金项目(50875027) 北京市自然科学基金项目(3092015)
关键词 自行车机器人 前轮驱动 定车运动 动力学建模 稳定平衡控制 bicycle robot front-wheel drive track stand motion dynamic modeling balanced control
  • 相关文献

参考文献6

  • 1Astrom K,Klein R E,Lennartsson A,et al.Bicycle dyna-mics and control:adapted bicycles for education andresearch[J].Control Systems Magazine,2005,25(4):26-47.
  • 2Yamakita M,Utano A.Automatic control of bicycles witha balancer[C]//Proceedings of IEEE International Con-feren-ce on Advanced Intelligent Mechatronics.Monter-ey:IEEE Press,2005:1245-1250.
  • 3Yavin Y.The derivation of a kinematic model from thedynamic model of the motion of a riderless bicycle[J].Computers and Mathematics with Applications,2006,51(6):865-878.
  • 4郭磊,廖启征,魏世民.自行车机器人动力学建模与MIMO反馈线性化[J].北京邮电大学学报,2007,30(1):80-84. 被引量:19
  • 5Liu Yanbin,Jia Chenhui,Han Jianhai.Dynamics modelingof an unmanned bicycle with parallel mechanism adjustingstability[C]//Proceedings of the 2009 IEEE InternationalConference on Mechatronics and Automation.Changchun:IEEE Press,2009:1601-1605.
  • 6Huang Yonghua,Liao Qizheng,Wei Shimin,et al.Dyna-mic modeling and analysis of a front-wheel drive bicyclerobot moving on a slope[C]//2010 IEEE InternationalCon-ference on Automation and Logistics.Hong Kong andMacao:IEEE Press,2010:43-48.

二级参考文献6

  • 1Neil H G.Internal equilibrium control of a bicycle[C]∥Proceedings of the 34th Conference on Decision & Control.New Orieans:IEEE,1995:4285-4287.
  • 2Jette Randlov.Learning to drive a bicycle using reinforcement learning and shaping[C]∥Proceedings of the 15th International Conference on Machine Learning.Madison:[s.n.],1998:463-471.
  • 3Ham.Self stabilizing strategy in tracking control of unmanned electric bicycle with mass balance[C]∥Proceedings of the 2002 IEEE/RSJ Conference on Intelligent Robots and Systems.Switzerland:IEEE,2002:2200-2205.
  • 4Shashikanth Suryanrayanan,Masayoshi Tomizula,Matt Weaver.System dynamics and control of bicycles at high speeds[C]∥ Proceedings of the American Control Conference.Anchorage:IEEE,2002:845-850.
  • 5Yasuhito Tanaka,Toshiyuki Murakami.Self sustaining bicycle robot with steering controller[C]∥ The 8th IEEE International Workshop on Advanced Motion Control.Kawasaki:IEEE,2004:193-197.
  • 6Karl J.Astrom,Richard E.Klein,Anders Lennartsson.Bicycle dynamics and control[J].IEEE Control Systems Magazine,2005,25(4):26-47.

共引文献18

同被引文献58

  • 1王路斌,葛瑜,胡德文.基于T-S模型的无人自行车平衡控制[J].控制工程,2008,15(S1):109-112. 被引量:5
  • 2何广平,陆震,王凤翔.欠驱动机器人动力学运动规划的动态子空间法及控制[J].机械工程学报,2004,40(8):145-149. 被引量:2
  • 3刘延柱.自行车的受控运动[J].力学与实践,1995,17(4):39-42. 被引量:14
  • 4高丙团,陈宏钧,张晓华.一类欠驱动机械系统的非线性控制[J].控制与决策,2006,21(1):104-106. 被引量:16
  • 5郭磊,廖启征,魏世民.自行车机器人动力学建模与MIMO反馈线性化[J].北京邮电大学学报,2007,30(1):80-84. 被引量:19
  • 6BROCKETT RW, MILLMAN R S, SUSSMANN H J. Differential geometric control theory[M]. Boston: Birkhauser, 1983.
  • 7YAVIN Y. The derivation of a kinematic model from the dynamic model of the motion of a riderless bicycle[J]. Computers and Mathematics with Applications, 2006, 51: 865-878.
  • 8LEE S, HAM W. Self stabilizing strategy in tracking control of unmanned electric bicycle with mass balance[C]// Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Octoberl2-13, 2002, Lausanne, Switzerland. Lausanne: IEEE, 2002: 2200-2205.
  • 9BUI T T, PAMICHKUN M, LE C H. Structure-specified H∞ loop shaping control for balancing of bicycle robots: A particle swarm optimization approach[J]. Proceedings of the Institution of Mechanical Engineers, Part h Journal of Systems and Control Engineering, 2010, 224(7), 857-867.
  • 10YAMAKITA M, UTANO A. Automatic control of bicycles with a balancer[C]// Proceedings of the 2005 IEEE International Conference on Advanced Intelligent Mechatronics, July24-28, 2005, Monterey, California. Monterey: IEEE, 2005: 1245-1250.

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部