期刊文献+

含Ni六方水钠锰矿的表征及其对Pb^(2+)(Zn^(2+))环境行为的影响 被引量:3

CHARACTERIZATION OF Ni-RICH HEXAGONAL BIRNESSITE AND ITS EFFECT ON BEHAVIOR OF AQUEOUS Pb^(2+)(Zn^(2+)) IN ENVIRONMENT
下载PDF
导出
摘要 六方水钠锰矿是土壤中普遍存在、活性最强的氧化锰矿物。它常常富集各种过渡金属如Ni等,对其地球化学行为具有重要影响。在六方水钠锰矿形成过程中加入Ni2+,Ni以+2价存在于矿物中。进入水钠锰矿结构中的Ni大部分以[NiO6]八面体形式存在于层内;部分Ni存在于八面体空位上下方。含Ni水钠锰矿沿c轴方向堆叠锰氧八面体层数逐渐减小,而a-b板面晶体大小没有明显变化,即层片状晶体逐渐变薄,比表面积显著增大。随着Ni含量的增加,水钠锰矿结构中锰氧八面体空位数减少,而层边面吸附位点数基本保持不变,其对重金属离子(Pb2+/Zn2+)吸附去除能力逐渐降低。本文为明确过渡金属离子(Ni)对土壤中氧化锰矿物的形貌、结构及其性质的影响提供了参考。 Hexagonal birnessite,ubiquitous in soils,is the most reactive manganese oxide,which often enriches itself with various transition metals,such as Ni,etc.thus significantly affecting its own geochemical behavior.Ni2+ is added when birnessite is being formed,and stays in the mineral in the form of positive bivalence.Part of the Ni ions that have entered into the structure of birnessite exist in the layers as [Ni(Ⅱ)O6]octahedra,and the other portion above or below the octahedra vacant sites.For these Ni-containing birnessite crystals,the number of octahedron layers that are stacked coherently along the c axis gradually decreases,while the size of the a-b plane does not change much,that is to say,the crystals become thinner,thus making their surface areas larger.With the increase in Ni content,the number of vacant sites decreases,while that of binding sites along the edges of the layers remains almost constant.Consequently,Pb2+/Zn2+ adsorption capacity of the birnessite attenuates.These findings may provide some insights into the effect of some transition metals,like Ni on the morphology,structure and properties of manganese oxide mineral in the soil.
出处 《土壤学报》 CAS CSCD 北大核心 2012年第3期417-427,共11页 Acta Pedologica Sinica
基金 国家自然科学基金项目(40830527和40971142) 全国优秀博士论文专项基金(200767) 教育部新世纪优秀人才支持计划项目(NCET-09-0399)资助
关键词 锰氧化物 六方水钠锰矿 Ni晶体化学 PB2+ Zn2+ Manganese oxide Hexagonal birnessite Nickel crystal-chemistry Lead Zinc
  • 相关文献

参考文献37

  • 1Goldberg E D. Marine geochemistry I-Chemical scavengers of the sea. The Journal of Geology, 1954, 62(3) : 249-265.
  • 2Calvert S E, Price N B. Geochemical variation in ferromanganese nodules and associated sediments from the Pacifc ocean. Marine Chemistry, 1977, 5 ( 1 ) : 43-74.
  • 3Arrhenius G. Pelagic sediments//Hill M N. Sea, vol. 3. New York: Interscience, 1963 : 655-727.
  • 4Manceau A, Tamura N, Marcus M A, et al. Deciphering Ni se- questration in soil ferromanganese nodules by combining X-ray flu- orescence, absorption and diffraction at micrometer scales of reso- lution. American Mineralogist, 2002, 87(10): 1 494-1 499.
  • 5Manceau A, Tamura N, Celestre R S, et al. Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi Basin. Environmental Science & Technol- ogy, 2003, 37 ( 1 ) : 75-80.
  • 6Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules. American Mineralogist, 2007, 92(7) : 1 087-1 092.
  • 7Peacock C L. Physiochemical controls on the crystal-chemistry of Ni in birnessite: Genetic implications for ferromanganese precipi- tates. Geochimica et Cosmochimica Acta, 2009, 73 ( 12 ) : 3 568-3 578.
  • 8Brown G E, Parks G A. Sorption of trace elements on mineral surfaces: Modem perspectives from spectroscopic studies, and comments on sorption in the marine environment. International Geology Review, 2001, 43 ( 11 ) : 963-1 073.
  • 9Peacock C L, Sherman D M. Sorption of Ni by birnessite: Equilibrium controls on Ni in seawater. Chemical Geology, 2007, 238(1/2) : 94-106.
  • 10Grangeon S, Lanson B, Lanson M, et al. Crystal structure of Ni- sorbed synthetic vernadite: A powder X-ray diffraction study. Mineralogical Magazine, 2008, 72(6) : 1 279-1 291.

同被引文献90

  • 1鲁安怀.矿物法——环境污染治理的第四类方法[J].地学前缘,2005,12(1):196-205. 被引量:60
  • 2陆泗进,谭文峰,刘凡,冯雄汉.一种改进的盐滴定法测定氧化锰矿物的电荷零点[J].土壤学报,2006,43(5):756-763. 被引量:9
  • 3冯雄汉,张嵚,谭军凤,文慧,谭文峰,刘凡.MnO_2-UV联用光化学降解苯酚废水的初步研究[J].矿物岩石地球化学通报,2006,25(4):319-323. 被引量:4
  • 4Feng X H,Tan W F,Liu F. Synthesis of todorokite at atmospheric pressure[J].Chemistry of Materials,2004,(22):4330-4336.doi:10.1021/cm0499545.
  • 5Tebo B M,Bargar J R,Clement B G. Biogenic manganese oxides:Properties and mechanisms of formation[J].Annual Review of Earth and Planetary Sciences,2004.287-328.
  • 6Grangeon S,Lanson B,Miyata N. Structure of nanocrystalline phyllomanganates produced by freshwater fungi[J].American Mineralogist,2010,(11/12):1608-1616.
  • 7Lanson B,Marcus M A,Fakra S. Formation of Zn-Ca phyllomanganate nanoparticles in grass roots[J].Geochimica et Cosmochimica Acta,2008,(10):2378-2490.doi:10.1016/j.gca.2008.02.022.
  • 8Drits V A,Lanson B,Gaillot A C. Birnessite polytype systematics and identification by powder X-ray diffraction[J].American Mineralogist,2007,(5/6):771-788.
  • 9Lanson B,Drits V A,Silvester E J. Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH[J].American Mineralogist,2000,(5/6):826-838.
  • 10Silvester E J,Manceau A,Drits V A. The structure of monoclinic Na-rich birnessite and hexagonal birnessite:Part 2.Results from chemical studies and EXAFS spectroscopy[J].American Mineralogist,1997,(9/10):962-978.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部