期刊文献+

基于密度权期望最大与分裂合并策略的线状模式挖掘

Line Pattern Mining Based on Density Weight Expectation Maximization and Splitting Merging Strategy
下载PDF
导出
摘要 该文针对非线性数据集中线状模式的挖掘问题,提出一种基于密度权期望最大(EM)与分裂合并策略的回归算法。算法基于有限混合模型思想,使用点向式方程定义线状模式表示,将网格密度作为调节权值引入EM过程,有效降低了回归落入局部极值的可能性。同时,引入分裂合并策略,使得算法能够解决连通性问题,并且即使在挖掘数设置与本质线状模式数不相符时也能获得正确结果。实验结果表明,算法对挖掘数设置不敏感,能够正确挖掘出噪声环境下数据集的线状模式。 To address the issue of line pattern mining of non-linear dataset,a new regression algorithm based on density weight Expectation Maximization(EM) and splitting merging strategy is proposed.Point-direction function is first employed to establish the expression of line pattern based on finite mixture model,and grid density is introduced into EM processing as adjust weight,which can effectively reduce the possibility of fall into local optimum of regression.Then a splitting merging strategy is introduced,which ensure the proposed algorithm can overcome the connectivity limitation,and can obtain a correct result even when the number of mining is not set as the same with the real line pattern number.Experiments demonstrate that the proposed algorithm is not sensitive to the set of mining number,and is able to correctly explore the line pattern of non-linear dataset under the noise environment.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第5期1162-1167,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61005032) 辽宁省自然科学基金(20102062) 沈阳市科学计划项目(F10-147-9-00) 中央高校基本科研业务费项目(N100604018)资助课题
关键词 数据挖掘 线状模式 期望最大化 网格密度 分裂合并 Data mining Line pattern Expectation Maximization(EM) Grid density Splitting merging strategy
  • 相关文献

参考文献13

  • 1Reddy C and Aziz M S.Modeling local nonlinear correlationsusing subspace principal curves[J].Statistical Analysis andData Mining,2010,3(5):332-349.
  • 2Kumar S,Ong S H,Ranganath S,et al..Invariant textureclassification for biomedical cell specimens via non-linearpolar map filtering[J].Computer Vision and ImageUnderstanding,2010,114(1):44-53.
  • 3Tong L and Hongbin Z.Riemannian manifold learning[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,2008,30(5):796-809.
  • 4Xiang S M,Nie F P,Pan C H,et al..Regressionreformulations of LLE and LTSA with locally lineartransformation[J].IEEE Transactions on Systems,Man andCybernetics,Part B,2011,41(5):1250-1262.
  • 5Sun Y J,Todorovic S,and Goodison S.Local-learning-basedfeature selection for high-dimensional data analysis[J].IEEETransactions on Pattern Analysis and Machine Intelligence,2010,32(9):1610-1626.
  • 6Donoho D L and Grimes C.Hessian eigenmaps:locally linearembedding techniques for high-dimensional data[J].Proceedings of the National Academy of Sciences of theUnited States of America,2003,100(10):5591-5596.
  • 7Armstrong M A.Basic Topology[M].New York:Springer-Verlag,1997:43-51.
  • 8马江洪,葛咏.图像线状模式的有限混合模型及其EM算法[J].计算机学报,2007,30(2):288-296. 被引量:12
  • 9黎刚果,王正志,王晓敏,倪青山,强波.Linear manifold clustering for high dimensional data based on line manifold searching and fusing[J].Journal of Central South University,2010,17(5):1058-1069. 被引量:1
  • 10Bilmes J.A gentle tutorial on the EM algorithm and itsapplication to parameter estimation for Gaussian mixtureand hidden Markov models[R].Technique Report,ICSI-TR-97-021,University of California,Berkeley,USA,1997.

二级参考文献30

  • 1CHENG Y, CHURCH G M. Biclustering of expression data [C]// Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology. La Jolla, California: AAA1 Press, 2000:93 103.
  • 2YANG J, WANG W, WANG H, YU E δ-clusters: Capturing subspace correlation in a large data set [C]// Proceedings of the 18th International Conference on Data Engineering. San Jose, CA: ICDE Press, 2002:517-528.
  • 3HARPAZ R, HARALICK R. Exploiting the geometry of gene expression patterns for unsupervised learning [C]// Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong: IEEE Computer Society Press, 2006: 670-674.
  • 4HARALICK R, HARPAZ R. Linear manifold clustering in high dimensional spaces by stochastic search [J]. Pattern Recognition, 2007, 40(10): 2672-2684.
  • 5DENG Hua, WU Yi-hu, DUAN Ji-an. Adaptive learning with guaranteed stability for discrete-time recurrent neural networks [J]. Journal of Central South University of Technology, 2007, 14(3): 685-690.
  • 6KITTLER J, ILLINGWORTH J. Minimum error thresholding [J]. Pattern Recognition, 1986, 19:41-47.
  • 7AEBERHARD S, COOMANS D, VEL O. The classification performance of RDA [R]. North Queensland: James Cook University of North Queensland, 1992:92 101.
  • 8SHAPIRA M, SEGAL E, BOTSTEIN D. Disruption of yeast forkhead-associated cell cycle transcription by oxidative stress [J]. Mol Biol Cell, 2004, 15(12): 5659-5669.
  • 9TROND B, BJARTE D, INGE J. LSimpute: Accurate estimation of missing values in microarray data with least squares methods [J]. Nucleic Acids Research, 2004, 32(3): e34.
  • 10AGRAWAL R, GEHRKE J, GUNOPULOS D, RAGHAVAN E Automatic subspace clustering of high dimensional data [J]. Data Mining and Knowledge Discovery, 2005, 11(1): 5-33.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部