期刊文献+

不同重力条件下水平管内气液两相流流型及空隙率分布的数值模拟 被引量:1

Numerical Study on Flow Patterns and Void Fraction Distribution in Gas-liquid Two-phase Flow in Horizontal Pipe Under Different Gravities
下载PDF
导出
摘要 基于VOF方法建立了不同重力条件下水平管内气液两相流动的三维非稳态数学模型并进行了数值求解,研究了10^(-4) g0,0.17 g0,0.38 g0,1 g0(90=9.8 m·s^(-2))四种重力条件下水平管内气液两流型及变化规律,比较了不同重力条件下管内截面空隙率的分布和波动规律.研究结果表明,该模型能够正确预测不同重力条件下水平管内气液两相流的流型、截面空隙率和滑速比等重要参数;同一气液两相表观速度工况下,随着重力水平的升高,气相更容易在水平管的上部积聚合并,致使流型发生变化,同时,气液两相滑速比增大,截面空隙率波动峰值的平均值下降,波动频率降低;而随着气液两相表观速度的增大,两相混合工质内惯性力作用也随之增强,这将削弱重力变化的影响. Based on the VOF(Volume of Fluid) method,a three-dimensional unsteady mathematical model is developed to study the gas-liquid two-phase flow in horizontal pipe under different gravities of 10^-4 go,0.17go,0.38 go and 1 go(go = 9.8m·s^-2).The flow patterns and their transitions are numerically investigated by the developed model and the void fraction distribution and oscillation are presented.The results indicate that the characteristics,such as flow patterns,void fraction,and slip ratio,of gas-liquid two-phase flow under different gravities can be well predicted by the developed model.Under the same two-phase superficial velocity,the gas phase accumulates and coalescences in the upper part of horizontal pipe with increasing gravity,resulting in the transition of flow patterns. In addition,with increasing gravity,the slip ratio increases while the peak and frequency of section void fraction oscillation decrease.However,due to that the increasing two-phase superficial velocity enhances the inertia force of two-phase flow,the gravity effects are weakened.
出处 《空间科学学报》 CAS CSCD 北大核心 2012年第3期383-390,共8页 Chinese Journal of Space Science
基金 高等学校博士学科点专项科研基金资助(20110092110049)
关键词 气液两相流 不同重力条件 流型 空隙率 滑速比 VOF Gas-liquid two phase flow Different gravity Flow pattern Void fraction Slip ratio VOF(Volume of Fluid)
  • 相关文献

参考文献15

  • 1Rezkallah K S.Recent progress in the studies of two-phase flow at microgravity conditions[J].Adv.Space Res.,1995, 16(7):123-132.
  • 2赵建福.微重力条件下气/液两相流流型的研究进展[J].力学进展,1999,29(3):369-382. 被引量:32
  • 3Dukler A E,Fabre J A,McQullen J B,et al.Gas-liquid flow at microgravity conditions:flow patterns and their transitions[J].Int.J.Multiphase Flow,1988,14(4):389- ??400.
  • 4Lee D,Best F R,McGraw N.Microgravity two-phase flow regime modeling[C]//Proceedings of the 3rd Nuclear Thermal Hydraulics,USA Los Angeles,1987.94-100.
  • 5Colin C,Kamp A,Fabre J.Influence of gravity on void distribution in two-phase gas-liquid flow in pipe[J].Adv. Space Res.,1993,13(7):141-145.
  • 6Takamasa T,Iguchi T,Hazuku T,et al.Interfacial area transport of bubbly flow under microgravity environment [J].Int.J.Multiphase Flow,2003,29(2):291-304.
  • 7Elkow K J,Rezkallah K S.Void fraction measurements in gas-liquid under 1-g andμ-g conditions using capacitance sensors[J].Int.J.Multiphase Flow,1997,23(5):815-829.
  • 8Elkow K J,Rezkallah K S.Statistical analysis of void fluctuations in gas-liquid flows under 1-g andμ-g conditions using capacitance sensors[J].Int.J.Multiphase Flow, 1997,23(5):831-844.
  • 9Low D C,Rezkallah K S.Flow regime identification in microgravity two-phase flow using void fraction signal[J]. Int.J.Multiphase Flow,1999,25(3):433-457.
  • 10Clark N N,Rezkallah K S.A study of drift velocity in bubbly two-phase flow under microgravity conditions[J]. Int.J.Multiphase Flow,2001,27(9):1533-1554.

二级参考文献6

  • 1Zhao J F,Int J Multiphase Flow,1999年
  • 2Joseph D D,Ann Rev Fluids Mech,1997年,29卷,65页
  • 3Reinarts T R,31st AIAA Thermo Physics Conf,1996年
  • 4Zhao L,Int J Multiphase Flow,1995年,21卷,5期,837页
  • 5Lee J,31st Aerospace Sciences Meeting Exhibit,1993年,11页
  • 6Zhao L,Int J Multiphase Flow,1993年,19卷,5期,751页

共引文献31

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部