期刊文献+

基于蚁群算法多层次动态信息提取仿真研究 被引量:1

Interest Management Based on Ant Colony Algorithm
下载PDF
导出
摘要 研究动态信息偏好捕捉精确度问题。网络数据存在重复性信息和随机性强。针对互联网中的大量数据,而造成了有效的信息的查找速度慢等缺陷,为了能够快速的获取更多的用户比较感兴趣信息,提出了一种改进的蚁群算法用户兴趣模式获取技术。面向层次结构的信息网站,算法首先根据网站和用户兴趣所具有的层次性特征,然后采用改进的蚁群算法较高的寻优机制,利用蚂蚁的觅食周期活动,从各个层次求出相应路径的信息素浓度,并适时的实行信息素更新机制,从而得到用户对该结点的偏好函数值,再依据此值求得用户兴趣模式。仿真结果表明,提出的方法能够有效地捕捉出用户兴趣信息,捕捉精确度较高,是一种有效的方法,具有一定的推广价值。 The research dynamic interest preference captures accuracy problems.For large data in the network structure caused by defects such as slow searching information,in order to be able to retrieve the user interest of more information,and proposes an improved ant colony algorithm user interests mode acquisition algorithm was presented for hierarchical structure,this paper firstly information website,according to the website and user interests have gradation,and then modified characteristics of ant colony algorithm higher searching mechanism,using the ants foraging cycle from all levels for activities,the corresponding path pheromone strength,and timely implement pheromone update mechanism,thus obtains the user to the node preferences function values,again according to the user's interests mode.For value Simulation experiments show that the proposed method can effectively capture a user interests information,capture more accurate,is a kind of effective method.
出处 《计算机仿真》 CSCD 北大核心 2012年第5期133-135,195,共4页 Computer Simulation
关键词 兴趣捕捉 蚁群算法 层次模型 信息素 Interest capture Ant colony algorithm Hierarchical model Pheromone
  • 相关文献

参考文献10

  • 1R Sarukkai. Link prediction and path analysis using Markov chains [ C ]. Proceedings of the 9th World Wide Web Conference Amster- dam, 2000.
  • 2冯林,何明瑞,罗芬.一种基于ExLF日志文件的用户会话识别启发式算法[J].计算机应用,2005,25(2):314-316. 被引量:4
  • 3A Wichert. Content-based image retrieval by hierarchical linear subspace method[ J]. Journal of Intelligent Information Systems, 2008,31 ( 1 ) :85-107.
  • 4K Bade, M Hermkes, A Nurnberger. User oriented hierarchical in- formation organization and retrieval [ C ]. Proceedings of the lSth European Conference on Machine Learning, Sep 2007:515-526.
  • 5P J Cowans. Information retrieval using hierarchical dirichlet processes[ C ]. Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2004-7:564-565.
  • 6Hu Yi, et al. A new hierarchical conceptual graph formalism adap- ted for Chinese document retrieval.[ C]. Proceedings of the Fourth International Conference on Fuzzy Systemsand Knowledge Discovery ( FSKD 2007) , 2007-2:653-657.
  • 7刘士新,宋健海,唐加福.蚁群最优化——模型、算法及应用综述[J].系统工程学报,2004,19(5):496-502. 被引量:36
  • 8V E Frias-Martinez, Karamcheti. A customizable behavior model for temporal prediction of web user sequences [ C ]. WEBKDD, 2002 : 66-85.
  • 9凌海峰,刘业政,杨善林.基于蚁群行为的动态挖掘用户导航模式兴趣模型[J].计算机工程与应用,2008,44(17):24-26. 被引量:2
  • 10J Srivastava, et al. Web usage mining: Discovery and applica- tions of usage patterns from web data [ J 1 ~ SIGKDD Explorations, 2000,1(2) :12-23.

二级参考文献51

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2马溪骏,凌海峰,刘业政,姜元春.基于蚁群算法的群体用户兴趣导航路径发现[J].中国管理科学,2006,14(3):56-59. 被引量:7
  • 3Huang Y M,Kuo Y H,Chen J N,et al.NP-miner:a real-time recommendation algorithm by using web usage mining[J].Knowledge- Based Systems, 2006, 19(4 ) : 272-286.
  • 4Wang F H,Shao H M.Effective personalized recommendation based on time-framed navigation clustering and association mining[J].Expert Systems with Application,2004,27:365-377.
  • 5Facca F M,Lanzi P L.Mining interesting knowledge from web logs: a survey[J].Data & Knowledge Engineering, 2005,53 : 225-241.
  • 6Pei J,Han J,Morlazavi-asl B,et al.Mining access patterns efficiently from web logs[C]//Paeifie-Asia Conference on Knowledge Discovery and Data Mining,2000: 396-407.
  • 7Sarukkai R R.Link prediction and path analysis using Markov chains[C]//Proceedings of the 9th World Wide Web Conference, Amsterdam, 2000.
  • 8Cooley R,Mobasher B,Srivastava J.Data preparation for mining World Wide Web browsing patterns[J].Journal of Knowledge and Information System, 1999, 1( 1 ) :5-32.
  • 9Smith K A,Ng A.Web page clustering using a self-organizing map of user navigation patterns[J].Decision Support Systems,2003,35: 245-256.
  • 10Gunduz S,Ozsu M T.A user interest model for web page navigation[C]//Proc Int Workshop on Data Mining for Actionable Knowledge ,Seoul, Korea, April 2003.

共引文献37

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部