期刊文献+

HH神经元的自抗扰同步研究 被引量:1

Synchronization of HR Neuron Systems by Active Disturbance Rejection Control
下载PDF
导出
摘要 因外部电磁环境变化导致生物神经元放电节律不同步是生物控制中需要解决的一个难点问题。HH神经元模型是描述神经元动力学特性的第一个数学模型,以HH神经元为研究对象,利用各种现代控制方法获得HH神经元的同步,方法的不足在于对外部干扰的敏感性以及控制律复杂不易实现。为增强神经元同步的鲁棒性和可行性,利用自抗扰控制算法,在三种不同情况下研究HH神经元的同步,并且依次加入不同干扰验证其同步效果。仿真结果表明,自抗扰控制能够对神经元系统的总扰动进行实时估计和补偿,消除扰动对神经元系统同步的影响,从而获得良好的同步效果。 Asynchronization of discharge rhythm in neurons, which results from external electromagnetic environment changes, is a difficulty problem need to solve in the study of biocontrol. HH model is the first model that describes the dynamics of neuron. Various kinds of modern control approaches, on the basis of HH model, have been employed in synchronization of HH neurons. Most of the synchronization approaches published, however, are sensi- tive to the external disturbances. In addition, the approaches are not convenient enough to realize in practice. With an attempt to improve the robustness and feasibility of the synchronization approach, the Active Disturbance Rejection Control (ADRC) was utilized to synchronize HH neurons. Three kinds of different cases were considered, and then different disturbances were added in order to verify the synchronization of ADRC. Simulation results show that the ADRC is able to estimate and compensate total disturbances of neuronal systems in real-time, which reduces the influence of disturbances in sYnchronization and guarantees a good synchronization effect.
出处 《计算机仿真》 CSCD 北大核心 2012年第5期209-214,共6页 Computer Simulation
基金 北京工商大学青年教师科研启动基金资助项目(QNJJ2011-40)
关键词 神经元 同步 自抗扰控制 Neuron Synchronization Active Disturbance Rejection Control (ADRC)
  • 相关文献

参考文献16

  • 1E R Kandel, J H Schwartz, T M Jesse1. Principles of Neural Sci- ence (Fourth ed)[M]. New York, NY: Mcgraw-Hill, 2000.
  • 2M A Stuchly, T W Dawson. Interaction of low-frequency electric and magnetic fields with the human body[ C]. Proceedings IEEE, 88, 2000,643-664.
  • 3F Blackman. Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro: a three- model analysis consistent with the frequency response up to 510Hz[ J]. Bioelec- tromagnetics, 9, 1988 : 215-327.
  • 4J W Shuai, D M Durand. Phase synchronization in two coupled chaotic neurons[ J]. Physics Letters A, 264, 1999:289-297.
  • 5A L Hodgkin, A F Huxley. A quantitative description of membrane and its application to conduction and excitation in nerve [ J ]. J. Physiol 117, 1952:500-544.
  • 6M Meister, R O Wong, D A Baylor, C J Shatz. Synchronization bursts of action potentials in ganglion cells of the developing man- nalian retinal J]. Science, 252, 1991: 939-943.
  • 7A K Kreiter, W Singer. Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque mon- key [J]. J. Neurosci, 16, 1996:2381-2396.
  • 8O Comejo- P6rez, R Femat. Unidirectional synchronization of Hodgkin-Huxley neurons[ J]. Chaos, Solitons and Fractals, 25, 2005:43-53.
  • 9S H Chen, J Lu. Synchronization of an uncertain unified system via adaptive control[ J]. Chaos, Solitons & Fractals, 14, 2002:643- 647.
  • 10彭勇,黄席樾.陈氏混沌系统的自适应同步控制[J].计算机仿真,2007,24(5):145-149. 被引量:2

二级参考文献22

  • 1魏荣,王行愚.连续时间混沌系统的自适应H_∞同步方法[J].物理学报,2004,53(10):3298-3302. 被引量:23
  • 2孙克辉,陈志盛,张泰山.基于参数自适应方法的统一混沌系统的同步控制[J].信息与控制,2005,34(1):40-43. 被引量:6
  • 3金鑫,江铭炎.参数不确定的混沌同步及在保密通信中的应用[J].计算机仿真,2007,24(2):96-98. 被引量:5
  • 4L M Pecora, T L Carroll. Synchronization in chaotic systems[ J]. Physical Review Letter. 1990,64 (8) :821 - 824.
  • 5F Han, J Lu, X. Yu, G Chen, Y Feng. Generating Multi - scroll Chaotic Attractors via a Linear Second - order Hysteresis System [ J]. Dynamics of Continuous, Discrete and Impulsive System,Se- riesB,2005,12( 1 ) :95 - 110.
  • 6S S Ge, C Wang. Adaptive control of uncertain chua's circuits[J].IEEE. Trans. on Circ. System. I, 2000,47(9):1397-1402.
  • 7Y G Yu, S H Zhang. Controlling uncertain lil system using backstepping design[ J]. Chaos, Solition & Fractals. 2003, 15 : 897 - 902.
  • 8Y G Yu, S C Zhang. Adaptive backstepping synchronization of uncertain chaotic system [ J ]. Chaos solitons & fractals. 2004,21 : 643 - 649.
  • 9J H Lv, G R Chen. Generating multiscroll chaotic attractors: theoties, methods and applications[ J]. Int. J. Bifurc. Chaos, 2006, 16(4) :775 -858.
  • 10Y Too,L O Chua.Secure communication via chaotic parameter modulation[J].IEEE Trans.Circuits Syst,1996,43(9):817-819.

共引文献3

同被引文献11

  • 1D Purves, G J Augustine, D Fitzpatrick, W C Hall, A S Laman- tia, J 0 McNamara and S M Williams. Neuroscience(3rd ed) [ M]. Sunderland, MA: Sinauer Associates, 2004.
  • 2J W Shuai, D M Durand. Phase synchronization in two coupled chaotic neurons[ J]. Phys. Lett. A, 1999,264:289-297.
  • 3Wei Wei, Li Donghai, Wang Jing, Zu Min, Zuo Min, Du Jun-ping. Adaptive synchronization of Ghostburster neurons under exter- nal electrical stimulation[ J]. Neurocomputing, 2012,98:40-54.
  • 4WeiXile, Wang Jiang, Deng Bin. Introducing internal model to ro- bust output synchronization of FitzHugh-Nagumo neurons in exter- nal electrical stimulation[J]. Commun Nonlinear Sci Numer Simu- lat, 2009,14:3108-3119.
  • 5Le Hoa Nguyen, Keum-Shik Hong. Adaptive synchronization of two coupled chaotic Hindmarsh-Rose neurons by controlling the membrane potential of a slave neuron [ J ]. Applied Mathematical Modelling, 2013,37 : 2460-2468.
  • 6H Dalibor. Synchronization of two Hindmarsh-Rose neurons with unidirectional coupling [ J ]. Neural Networks, 2013,40:73-79.
  • 7D J Watts, S H Strogatz. Collective dynamics of ' small-world' networks[ J]. Nature, 1998,393:440-442.
  • 8A Tornamble, P A Valigi. Decentralized Controller for the Robust Stabilization of a Class of MIMO Dynamical Systems [ J ]. Journal of Dynamic Systems, Measurement, and Control, 1994,116:293 -304.
  • 9郑鸿宇,罗晓曙.刺激引起的小世界生物神经网络同步[J].复杂系统与复杂性科学,2008,5(1):49-53. 被引量:1
  • 10宋海裕,俞立,胡鸿翔.牵制控制下的的多多智能体系统群一致性[J].控制理论与应用,2012,29(6):765-772. 被引量:12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部