期刊文献+

基于多示例学习的超市农产品图像识别 被引量:7

Image recognition of agricultural products in supermarket based on multi-instance learning
下载PDF
导出
摘要 为解决超市农产品价格需依靠人工记忆的问题,实现农产品的智能识别,提出了基于多示例学习的农产品图像识别方法。采用改进的单色块及其邻域算法(SBN)特征提取算法将训练样本组织成多示例包,利用多样性密度算法对正包和反包进行多示例学习,根据多样性密度最大化模型对测试样本进行识别。分别在自采集的多类别果蔬图像集以及Amsterdam图像库中的单类别果蔬图像上进行测试。结果表明该方法能够识别不同光照、存在干扰物的环境背景下,以任意方式摆放的多类别混合果蔬图像,识别率最高达到94.21%,且对于单类别果蔬图像的识别优于全局方法。因此利用基于多示例学习的图像识别方法对超市农产品的自动售卖提供辅助具有可行性。 The pricing of agricultural products in supermarket needs to rely on artificial memory.In order to realize intelligent recognition of agricultural products,an image recognition method of agricultural products based on the multi-instance learning was proposed.An improved Single Blob with Neighbors(SBN) method was adopted to organize bags and meanwhile extract features of an image.The target concept was learned by maximizing Diverse Density(DD) and applied to images recognition.Experiments were performed on both multi-class produce image dataset by self-collection and single-class agricultural product images selected from Amsterdam Library of Object Images(ALOI).The experimental results show that the method is able to recognize multi-class agricultural product images captured under various illumination conditions and interference environment,and the recognition rate can achieve 94.21 percent.Additionally,the method performs better than global method when recognizing single-class agricultural product images.
出处 《计算机应用》 CSCD 北大核心 2012年第6期1560-1562,1566,共4页 journal of Computer Applications
基金 陕西省烟草重大科技专项(K332021101)
关键词 超市农产品 图像处理 模式识别 多示例学习 特征提取 agricultural products in supermarket image processing pattern recognition multi-instance learning feature extraction
  • 相关文献

参考文献12

  • 1展慧,李小昱,王为,汪成龙,周竹,黄懿.基于机器视觉的板栗分级检测方法[J].农业工程学报,2010,26(4):327-331. 被引量:75
  • 2马东昱,孙龙清.基于图像特征的籽棉品级分级模型[J].计算机应用,2010,30(8):2235-2237. 被引量:3
  • 3张俊雄,荀一,李伟.山竹的计算机视觉分级方法[J].农业机械学报,2009,40(11):176-179. 被引量:10
  • 4BOLLE R. M, CONNELL J H, HAAS N, et al. Veggie vision: a produce recognition system[ C]// 3rd IEEE Workshop on Applica- tions of Computer Vision. Piscataway: IEEE Press, 1996:244 - 251.
  • 5ROCHA A, HAUAGGE D C, WAINER J, et al. Automatic fruit and vegetable classification from images [ J]. Computers and Elec- tronics in Agriculture, 2010, 70(1) : 96 - 104.
  • 6DIETI?ERICH T G, LATHROP R H, PEREZ T L, et al. Solving the multiple instance problem with axis-parallel rectangles[ J]. Artificial Intelligence, 1997, 89(1): 31-71.
  • 7MARON O, RATAN A L. Muhiple-instance learning for natural scene classification[ C] // Proceedings of the 15th International Con- ference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1998:341 -349.
  • 8YANG C. Image database retrieval with multiple-instance learning techniques[ C]// Proceedings of 16th International Conference on Data Engineering. Piscataway: IEEE Press, 2000:81 - 82.
  • 9戴宏斌,张敏灵,周志华.一种基于多示例学习的图像检索方法[J].模式识别与人工智能,2006,19(2):179-185. 被引量:9
  • 10王春燕,袁津生.一种结合多示例学习的图像检索方法[J].计算机系统应用,2010,19(6):212-215. 被引量:4

二级参考文献54

共引文献94

同被引文献63

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部