期刊文献+

基于局部平滑性的通用增量流形学习算法 被引量:1

Generalized incremental manifold learning algorithm based on local smoothness
下载PDF
导出
摘要 目前大多数流形学习算法无法获取高维输入空间到低维嵌入空间的映射,无法处理新增数据,因此无增量学习能力。而已有的增量流形学习算法大多是通过扩展某一特定的流形学习算法使其具备增量学习能力,不具有通用性。针对这一问题,提出了一种通用的增量流形学习(GIML)算法。该方法充分考虑流形的局部平滑性这一本质特征,利用局部主成分分析法来提取数据集的局部平滑结构,并寻找包含新增样本点的局部平滑结构到对应训练数据的低维嵌入坐标的最佳变换。最后GIML算法利用该变换计算新增样本点的低维嵌入坐标。在人工数据集和实际图像数据集上进行了系统而广泛的比较实验,实验结果表明GIML算法是一种高效通用的增量流形学习方法,且相比当前主要的增量算法,能更精确地获取增量数据的低维嵌入坐标。 Most of the existing manifold learning algorithms are not capable of dealing with new arrival samples.Although some incremental algorithms are developed via extending a specified manifold learning algorithm,most of them have some disadvantages more or less.In this paper,a new and more Generalized Incremental Manifold Learning(GIML) algorithm based on local smoothness was proposed.GIML algorithm firstly extracted the local smooth structure of data set via local Principal Component Analysis(PCA).Then the optimal linear transformation,which transformed the local smooth structure of new arrival sample's neighborhood to its correspondent low-dimensional embedding coordinates,was computed.Finally the low-dimensional embedding coordinates of new arrival samples were obtained by the optimal transformation.Extensive and systematic experiments were conducted on both artificial and real image data sets.The experimental results demonstrate that the GIML algorithm is an effective incremental manifold learning algorithm and outperforms other existing algorithms.
出处 《计算机应用》 CSCD 北大核心 2012年第6期1670-1673,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61179040 60970034) 河南省科技攻关计划项目(102102210509)
关键词 维数归约 流形学习 增量学习 局部切空间对齐 局部线性嵌入 dimensionality reduction manifold learning incremental leaning local tangent space aligment Local Linear Embedding(LLE)
  • 相关文献

参考文献16

  • 1TENENBAUM J B, SILVA V D, LANG- FORD J C. A global geometric framework for nonlinear dimensionality reduction[ J]. Sci- ence, 2000, 290(22) : 2319 -2323.
  • 2ROWEIS S T, SAUL L K. Nonlinear dimen- sionality reduction by locally linear embed- ding[J]. Science, 2000, 290(22): 2323- 2326.
  • 3BELKIN M, NIYOGI P. Laplacian eigen- maps for dimensionality reduction and data representation [ J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 4ZHANG ZHEN-YUE, ZHA HONG-YUAN. Principal manifolds and nonlinear dimension reduction via local tangent space alignment [ J]. SIAM Journal on Scientific Computing, 2005, 26( 1 ) : 313 - 338.
  • 5X1ANG SHIMING, NIE FEIPING, ZHANG CHANGSHUI, et al. Nonlinear dimensional- iN reduction with local spline embedding [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1285- 1298.
  • 6MAATEN L V, H1NTON G. VisuMizing da- ta using t-SNE [ J]. Journal of Machine Learning Research. 2008, 9 (4) : 2579 - 2605.
  • 7JOLLIFFE 1 T. Principal component analysis [M]. Berlin: Springer-Verlag, 1989.
  • 8DUDA R O, HART P E, STORK D G. Pattern classification[ M]. New York: John Wiley & Sons, 2001.
  • 9LAW M H C, JAIN A K. Incremental nonlinear dimensionality re- duction by manifold learning[ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2006, 28(3) : 377 - 391.
  • 10COX T F, COX M A A. Multidimensional scaling[ M]. Florida: Chapman and Hall, 1994.

同被引文献28

  • 1王冬青.时滞系统的辨识及NARMA模型的修正[J].中国工程科学,2006,8(2):39-43. 被引量:4
  • 2庞世伟,于开平,邹经湘.基于时变NARMA模型的非线性时变系统辨识[J].工程力学,2006,23(12):25-29. 被引量:5
  • 3BAFNA S S, BEALL A M. A design of experiments study on the factors affecting variability in the melt index measurement [ J]. Jou- nal of Applied Polymer Science, 1997, 65(2) : 277 -288,.
  • 4REGINATO A S, ZACCA J J, SECCHI A R. Modeling and simula- tion of propylene polymerization in nonideal loop reactors[ J]. AIChE Journal, 2003, 49(10): 2642-2654.
  • 5KIM T Y, YEO Y K. Development of polyethylene melt index infer- ential model[ J]. Korean Journal of Chemical Engineering, 2010, 27 (6) : 1669 - 1674.
  • 6LOU H, SU H, XIE L, et al. Inferential model for industrial poly- propylene melt index prediction with embedded priori knowledge and delay estimation[ J]. Industrial & Engineering Chemistry Research, 2012, 51(25) : 8510 -8525.
  • 7SHI J, LIU X, SUN Y. Melt index prediction by neural networks based on independent component analysis and multi-scale analysis [ J]. Neurocomputing, 2006, 70(2) : 280 - 287.
  • 8LIU X, ZHAO C. Melt index prediction based on fuzzy neural net- works and PSO algorithm with online correction strategy[ J]. AIChE Journal, 2012, 58(4):1194-1202.
  • 9ZHANG M, LIU X. A soft sensor based on adaptive fuzzy neural network and support vector regression for industrial melt index pre- diction [ J]. Chemometrics and Intelligent Laboratory Systems, 2013, 126(15) : 83 -90.
  • 10ZHANG Z, WANG T, LIU X. Melt index prediction by aggregated RBF neural networks trained with chaotic theory[ J]. Neurocomput- ing, 2014, 131(5): 368-376.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部