摘要
针对多峰函数优化中的全局及局部寻优问题,提出了一种结合免疫克隆算子的量子遗传算法,给出了实现流程。该方法针对量子遗传算法在复杂连续函数优化中收敛速度慢、易陷入局部极值等缺点,采用免疫克隆操作及交叉策略提高抗体成熟力及亲和性,增强抗体群分布的多样性及稳定性,有效克服了量子遗传算法容易陷于局部最优及计算缓慢的不足。通过对多峰函数的全局寻优仿真实验,并与基本遗传算法、量子遗传算法的计算结果进行比较,结果表明在相同条件下,所提算法所需循环代数少,并且其鲁棒性高于普通量子遗传算法和遗传算法。
In order to balance the global optimization and local optimization in multi-modal function,an improved quantum genetic algorithm with immune operator was introduced.This algorithm included the idea of immune clonal,operation and cross strategy.Through this operator,the diversity of antibody and affinity maturation rate got enhanced.It not only overcame the flaw of the common quantum genetic algorithm which relapsed into local optimum result but also avoided the flaw of the common immune clone algorithm which calculated slowly.Having done the global optimization experiment on the multimodal function in the same condition,the result indicates that this algorithm can settle the problem of searching the global optimization result with less iteration,and is of more robust stability compared to common genetic algorithm and common quantum genetic algorithm.
出处
《计算机应用》
CSCD
北大核心
2012年第6期1674-1677,共4页
journal of Computer Applications
基金
教育部人文社会科学研究青年基金项目(12YJCZH233)
湖南省科技计划重点项目(2011SK2017)
湖南省教育厅科学研究一般项目(11C0740)
湖南省科技计划项目(2011GK3175)
湖南省重点学科建设项目
关键词
量子遗传算法
免疫算法
多峰函数
全局优化
Quantum Genetic Algorithm(QGA)
immune algorithm
multi-modal function
global optimization