期刊文献+

量子神经网络算法在电网故障诊断中的应用 被引量:3

Quantum Neural Network Algorithm in Qower System Fault Diagnosis
下载PDF
导出
摘要 将量子神经网络(QNN)方法应用到电网故障中,建立故障诊断模型。首先以保护装置和断路器的动作信息为条件属性集,建立电网故障决策表,然后将简化后的决策表作为训练样本,训练量子神经网络,使网络具有故障诊断功能。仿真实验结果表明,提出的算法有效提高了故障诊断的正确性和效率。 QNN method is applied to power system fault, the establishment of fault diagnosis model. First, to protect the device and circuit breaker action information for the condition attribute set, the building of power grid fault decision table, and then the simplified decision table as training samples, quantum neural network training, the network with fault diagnosis. The simulation results show that, the algorithm can effectively improve the accuracy and efficiency of fault diagnosis.
作者 张晓智
机构地区 淄博职业学院
出处 《科技通报》 北大核心 2012年第4期65-66,69,共3页 Bulletin of Science and Technology
基金 山东省自然科学基金(ijdflx2009)
关键词 电网 故障诊断 量子神经网络 power system fault diagnosis neural network
  • 相关文献

参考文献4

二级参考文献41

  • 1文福拴,韩祯祥.基于遗传算法和模拟退火算法的电力系统的故障诊断[J].中国电机工程学报,1994,14(3):29-35. 被引量:99
  • 2吴欣,郭创新,曹一家.基于贝叶斯网络及信息时序属性的电力系统故障诊断方法[J].中国电机工程学报,2005,25(13):14-18. 被引量:84
  • 3[2]Eemuri A T.Diagnosis of sensor bias faults[C].American Control Conference,1995,(1):460-464.
  • 4[4]Wilisky A S,A survey of design methods for failure detection in dynamic systems [J],Automatica,1976,(12):601-611.
  • 5[8]Agrawal R,Imielinski T,Swanmi A N.Mining association rules be-tween sets of items in large databases[C].Sigmod Conference,1993.
  • 6[9]Rafiei D,Mendelzon A.Similarity-based queries for time series data [C].In Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, pages 13-23,Tucson,Arizona,1997.
  • 7Lee H J, Park D Y, Ahn B S et al. A fuzzy expert system for the integrated fault diagnosis[J]. IEEE Trans. Power Delivery, 2000,15(2): 833-838.
  • 8Wen F S, Chang C S, Tian L. A modified abductive inference model for fault section estimation in power systems using the tabu search approach[J]. Electric Machines and Power Systems, 2000, 28:399-414.
  • 9Lo K L, Ng H S, Grant D M et al. Extended Petri net models for fault diagnosis for substation automation[J]. IEE Proc.-Gener. Transm.Distrib. 1999, 146(3): 229-234.
  • 10Moody J, Darken C. Fast learning in networks of locally-tuned processing units[J]. Neural Computation 1989,1: 281-294.

共引文献221

同被引文献24

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部