期刊文献+

基于离散粒子群算法的多约束多目标优化 被引量:1

Based on Discrete Particle Swarm Algorithm is More Than the Multi-objective Optimization
下载PDF
导出
摘要 利用粒子群算法(PSO)提出了一个新的粒子编码方法,并将其用于高校排课问题。通过对某高校的排课数据进行测试,结果表明,本文所提出的改进PSO算法对于解决高校排课问题的优化是有效的,对其它多目标问题地求解也有借鉴意义。 Using particle swarm optimization (PSO) proposed a new particle encoding method, and applied to Course Scheduling problem for colleges and universities. Timetable of a university by test data, experimental results show that the proposed improved PSO algorithm for solving the optimization problem of college course arrangement is effective, For other multi-objective problems is also a valuable reference.
出处 《科技通报》 北大核心 2012年第4期138-140,共3页 Bulletin of Science and Technology
基金 国家自然科学基金资助项目(90718020) 广西自然科学基金资助项目(0832005Z)
关键词 粒子群算法 多约束 多目标优化 PSO combinatorial optimization multi-objective optimization
  • 相关文献

参考文献4

  • 1Mei Shengquan.Particle swarm optimization immuno Time tabling System [J].SiliconValley,No.7,2009,51-52(InChi- nese).
  • 2Ren Keqiang,Zhao Guangfu,Zhang Guoping.University Course Scheduling Modeland Algorithm of the problem[J]. Computer and Modernization,2007,10:80-82(InChinese).
  • 3J Kennedy,R C Eberhart.Particle Swarm Optimization Proc IEEE International Conferenceon Neural Networks,IVP is cataway,NJ,IEEE Service Center,1995,1942-1948.
  • 4M Clerc.Discrete Particle Optimization Illustrated by the Traveling Salesman Problem[M]2000.

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部