期刊文献+

基于曲线波的超声图像分割 被引量:3

Ultrasound image segmentation based on curvelet
下载PDF
导出
摘要 为了提高前列腺超声图像分割的准确率,提出一种基于曲线波的半监督超声图像自动分割方法.首先,采用对微小波动敏感度高的Riemann-Liouville(RL)分数阶微分算子,突出模糊边界并增强超声图像的纹理;其次,运用曲线波变换对超声图像进行频域中的分解,获得不同子带分量以表达超声图像特征;然后,基于Adaboost的分类算法识别出超声图像中的病灶区和非病灶区;最后,采用中值滤波和腐蚀的方法使病灶区域边缘完整、平滑.实验表明,与运用共生矩阵及二进小波作纹理分析的分割结果比较,所提出的方法在准确率上有了很大的改进,分割超声图像效果更佳. In order to improve the accuracy of prostate ultrasound image segmentation, a semi-super- vised automatic segmentation method based on curvelet transform is proposed. First, the Riemann- Liouville (RL) fractional differential operator which is sensitive to the tiny fluctuations is used to en- hance the fuzzy boundary and image texture. Secondly, the image is transformed into curvelet do- main and different subbands are obtained to represent the ultrasound image characteristics. Thirdly, the Adaboost algorithm is applied to identify the lesion and non-lesion regions in the ultrasound im- age. Finally, the median filter and the erosion operator are used to smooth the lesion regions' edge. Experiments show that the proposed method outperforms the approaches based on co-occurrence ma- trix and dyadic wavelet in terms of accuracy.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期419-423,共5页 Journal of Southeast University:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)资助项目(2011CB707904) 国家自然科学基金资助项目(60911130370) 教育部博士点基金资助项目(20110092110023)
关键词 Riemann—Liouville分数阶微分 曲线波变换 ADABOOST 超声图像 分割 Riemann-Liouville fractional differential curvelet transform Adaboost ultrasound im- age segmentation
  • 相关文献

参考文献12

  • 1Yu Y,Molloy J A,Acton S T.Segmentation of the prostate from suprapubic ultrasound images[J].Med Phys,2004,31(12):3474-3484.
  • 2Abolmaesumi P,Sirouspour M R.An interacting multiple model probabilistic data association filter for cavity boundary extraction from ultrasound images[J].IEEE Trans Med Imag,2004,23(6):772-784.
  • 3Starck J L,Elad M,Donoho D.Redundant multiscale transforms and their application for morphological component separation[J].Adv Imaging Electron Phys,2004,132(1):287-348.
  • 4Candès E J,Donoho D L.Ridgelets:a key to higher-dimensional intermittency[J].Phil Trans R Soc Lond A,1999,357(1760):2495-2509.
  • 5Binh N T,Thanh N C.Object detection of speckle image base on curvelet transform[J].ARPN Journal of Engineering and Applied Sciences,2007,2(3):14-16.
  • 6Murtagh F,Starck J L.Wavelet and curvelet moments for image classification:application to aggregate mixture grading [J].Pattern Recognition Letters,2008,29(10):1557-1564.
  • 7Chen B J,Xiao Y,Yu J G,et al.Ultrasonic speckle suppression based on a novel multiscale thresholding technique[C]//International Symposium on Visual Computing.Rabat,Morocco,2010:1-5.
  • 8Eltoukhy M M,Faye I,Samir B B,et al.Breast cancer diagnosis based on texture feature extraction using curvelet transforms[C]//International Congress on Instrumentation and Applied Sciences.Kuala Lumpur,Malaysia,2010:1-4.
  • 9Pu Y F,Zhou J L,Yuan X.Fractional differential mask:a fractional differential-based approach for multiscale texture enhancement [J].IEEE Transactions on Image Processing,2010,19(2):491-511.
  • 10Gan Z F,Yang H Y.Texture enhancement though multiscale mask based on RL fractional differential[C]//2010 International Conference on Information Networking and Automation.Kunming,China,2010:333-337.

同被引文献18

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部