期刊文献+

加压循环流化床气固流动特性实验研究Ⅱ:气固滑移特性 被引量:4

Experimental research of gas-solid flow behaviors in pressurized circulating fluidized bed—Ⅱ:gas-solid slip behaviors
下载PDF
导出
摘要 针对加压煤燃烧、气化和化学链燃烧的发展需求,建立了一种上升管内径为0.068m、高5.2 m的加压循环流化床冷态实验装置,研究了不同操作压力(0.1~0.5 MPa)下,平均粒径为137μm、密度为2 490 kg/m3的Geldart B类颗粒的气固滑移特性.实验结果表明,在固体通量和状态表观气速一定的情况下,随操作压力的增加,上升管内颗粒的表观滑移速度和表观滑移因子逐渐减小,但并未对上升管内的气固滑移特性造成本质影响.与常压情况类似,加压下表观滑移速度、状态表观气速和表观颗粒体积分数之间存在显著的相关性.无量纲滑移速度随表观颗粒体积分数的增加呈幂函数型增加,表观滑移因子随无量纲滑移速度的增加呈指数型增加. According to the development requirement of pressurized coal combustion, gasification and chemical looping combustion, a cold-model experimental facility of a pressurized circulating fluidized bed with the riser diameter of 0.068 m and the height of 5.2 m is built. The slip behaviors of Geldart group B particles with the mean diameter of 137 μm and the density of 2 490 kg/m3 are investigated under different operating pressure (0. 1 to 0.5 MPa). The experimental results show that both the average slip velocity and the slip factor decrease with the increase of the operating pres- sure under the same pressurized state apparent gas velocity and solid mass flux. The elevating operat- ing pressure does not essentially influence the gas-solid slip behaviors in the riser. At the elevated pressure, the significant correlation exists among the average slip velocity, the pressurized state superficial gas velocity and the apparent solid holdup, which is similar to the relativity at the atmos- pheric condition. The dimensionless slip velocity increases with the increase of the apparent solid holdup following the power function. In addition, the average slip factor increases exponentially with the increase of the dimensionless slip velocity.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期441-446,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51076029) 国际科技合作资助项目(2010DFA61960)
关键词 气固两相流 循环流化床 加压 流动特性 气固滑移 gas-solid flow circulating fluidized bed pressurized flow characteristics gas- solid slip
  • 相关文献

参考文献14

  • 1Anthony E J.Fluidized bed combustion of alternative solid fuels; status,successes and problems of the technology [J].Progress in Energy and Combustion Science,1995,21(3):239-268.
  • 2Xu G,Murakami T,Suda T,Matsuzawa Y,et al.The superior technical choice for dual fluidized bed gasification [J].Ind Eng Chem Res, 2006,45(7):2281-2286.
  • 3Chen Y M.Recent advances in FCC technology [J].Powder Technol, 2006,163(1/2):2-8.
  • 4Duvenhage D J,Shingles T.Synthol reactor technology development [J].Catal Today,2002,71(3/4):301-305.
  • 5殷上轶,金保昇,钟文琪,陆勇,邵应娟,刘浩.加压循环流化床气固流动特性实验研究Ⅰ:颗粒体积分数分布特性[J].东南大学学报(自然科学版),2012,42(2):308-312. 被引量:7
  • 6Bricout V,Louge M Y.A verification of Glicksman’s reduced scaling under conditions analogous to pressurized circulating fluidization [J].Chemical Engineering Science,2004,59(13):2633-2638.
  • 7蔡平,陈沙鹏,金涌,俞芷青,汪展文.EFFECT OF OPERATING TEMPERATURE AND PRESSURE ON THE TRANSITION FROM BUBBLING TO TURBULENT FLUIDIZATION[J].Chinese Journal of Chemical Engineering,1990(1):122-132. 被引量:3
  • 8程乐鸣,岑可法,倪明江,骆仲泱.压力循环流化床中的传热研究[J].工程热物理学报,1996,17(4):492-496. 被引量:5
  • 9P?rssinen J H,Zhu J X.Axial and radial solids distribution in a long and high-flux CFB riser [J].AIChE J,2001,47(10):2197-2205.
  • 10Patience G S,Chaouki J.Scaling considerations for circulating fluidized bed risers [J].Powder Technology,1992,72(1):31-37.

二级参考文献25

  • 1许明磊,严建华,马增益,王勤,孙巍,岑可法.循环流化床垃圾焚烧炉固体残留物的特性研究[J].中国电机工程学报,2007,27(8):16-21. 被引量:9
  • 2Kim S W, Kirbas G, Bi H, et al. Flow behavior and regime transition in a high-density circulating fluidizedbed riser[l]. Chemical Engineering Science. 2004, 59(18): 3955-3963.
  • 3Contractor R M, Patience G S, Garnett D I. A new process for n-butane oxidation to maleic anhydride using a circulating fluidized- bed Reactor[J]. International Conference on Circulating Fluidized Beds4th, NewYork, America, 1994, 387-391.
  • 4Mei J S, Shadle L J, Yue P, et al. Hydrodynamics of a transport reactor operating in dense suspension upflow conditions for coal combustion applications[C]. The 18th International Conference on Fluidized Bed Combustion, Toronto, Canada, 2005: 423-431.
  • 5Morton F, Pinkston T, Salazar N, et al. Orlando gasification project: Demonstration of a nominal 285 MW coal-based transport gasifier [C]. 23rd Annual International Pittsburgh Coal Conference, Pittsburgh, America, 2006: 10-18.
  • 6Rogers L H, Booras G S, Breault R W. Power systems development facility update on six trig studies[C]. 23rd Annual International Pittsburgh CoalConference, Pittsburgh, America, 2006: 16-26.
  • 7Kim J S, Tachino R, Tsutsumi A. Effects of solids feeder and riser exit configuration on establishing high density circulating fluidized beds [J]. PowderTechnol, 2008, 187(1).. 37-45.
  • 8Du B, Warsitio W, Fan L S. Behavior of the dense-phase transportation regime in a circulating fluidized bed[J]. Ind. Eng. Chem. Res., 2006, 45(10): 741-751.
  • 9Luo Z, Zhao Y, Chen Q, et al. Effect of gas distributor on performance of dense phase high density fluidized bed for separation [J]. Int. J. Miner. Process, 2004, 74 (1-4): 337-341.
  • 10Issangya A S, Bai D, Bi H T, et al. Suspension densities in a high-density circulating fluidized bed riser[J]. Chemical Engineering Science, 1999, 54(22): 5451-5460.

共引文献27

同被引文献18

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部