期刊文献+

基于模糊核聚类的乙烯裂解深度DE-LSSVM多模型建模 被引量:18

Multiple DE-LSSVM modeling of ethylene cracking severity based on fuzzy kernel clustering
下载PDF
导出
摘要 乙烯裂解深度的建模与控制对于裂解炉的实时优化具有重要意义。针对石脑油原料组分复杂、油品特性波动大等状况,采用模糊核聚类对石脑油数据库进行最优划分,建立最小二乘支持向量机的多模型,对于最小二乘支持向量机中模型的参数选取,利用差分进化算法进行参数寻优,提高了模型的精度和泛化能力。通过对现场数据的建模实验,结果表明:基于模糊核聚类的乙烯裂解深度最小二乘支持向量机多模型跟踪性能良好,预测精度较高。 Modeling and control of ethylene cracking severity is very important to the real-time optimization of cracking furnace.To address the problem with the complexity and volatility of naphtha feedstock components,fuzzy kernel clustering method was developed to divide the naphtha database optimally.After establishing multiple models of least squares support vector machine(LSSVM),in order to improve the model accuracy and generalization ability,differential evolution algorithm was used to determine the proper parameters of the LSSVM model.We established each sub-model based on the sub-condition in ethylene cracking process,also the switching strategy was based on weighted value.The simulation results on the real industrial data showed that DE-LSSVM multiple models of ethylene cracking severity based on fuzzy kernel clustering got good tracking performance and high accuracy.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第6期1790-1796,共7页 CIESC Journal
基金 国家重点基础研究发展计划项目(2009CB320603) 国家自然科学重点基金项目(61134007) 国家高技术研究发展计划项目(2012AA040307) 上海市科技攻关项目(10dz1121900) 高等学校学科创新引智计划(B08021) 上海市重点学科建设项目(B504)~~
关键词 乙烯裂解深度 模糊核聚类 最小二乘支持向量机 多模型建模 ethylene cracking severity fuzzy kernel clustering least squares support vector machine multiple modeling
  • 相关文献

参考文献18

  • 1Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995.
  • 2Suykens J A K,Vandewalle J.Least squares support vectormachines classifiers[J].Neural Networks Letters,1999,19(3):293-300.
  • 3Vapnik V N.An overview of statistical learning theory[J].IEEE Trans.on Neural Network,1999,10(5):988-999.
  • 4李卫,杨煜普,王娜.基于核模糊聚类的多模型LSSVM回归建模[J].控制与决策,2008,23(5):560-562. 被引量:31
  • 5刘瑞兰,牟盛静,苏宏业,褚健.基于支持向量机和粒子群算法的软测量建模[J].控制理论与应用,2006,23(6):895-899. 被引量:31
  • 6Chen Pengwei,Wang Jungying,Lee Hahnming.Modelselection of SVMs using GA approach//Neural NetworksProceedings[C].New York:IEEE Press,2004:2035-2040.
  • 7Bezdek J C.Pattern Recognition with Fuzzy ObjectiveFunction Algorithms[M].New York:Plenum Press,1981.
  • 8Kim D W,Lee K H,Lee D.One cluster validity index forestimation of the optimal number of fuzzy clusters[J].Pattern Recognition,2004,37(10):2009-2025.
  • 9Xu R,Wunsch II D C.Survey of clustering algorithms[J].IEEE Trans on Neural Networks,2005,16(3):645-678.
  • 10Xie X L,Beni G.A validity method for fuzzy clustering[J].IEEE Trans.PAMI,1991,13(8):841-847.

二级参考文献90

共引文献169

同被引文献179

引证文献18

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部