摘要
通过对椴始叶螨Eotetranychus tiliarium(Herm.)及其捕食性植绥螨样本数据的统计分析,作者建立和论证了样本变异系数与均值间的幂函数方程CV=axb。结果证明,这一方程是客观存在的,定量反映了变异性与均值间相互影响的统计规律性。当它与t分布概率值及相对精度D值组合时,就构成了抽样模型n=(t/D·axb)2;对于同类研究,这一模型具备理论意义与实用潜力。本文据此估算了椴始叶螨和植绥螨的最佳样本含量。
The samples of the linden spider mite, Eotetranychus tiliarium (Herm.), and its predatory phytoseiids were statistically analyzed, and the power relation as well as corresponding equations between the coefficients of variation (CV) and the means (x), CV=axb, were established and validated. The results indicated that the power equations existed objectively, and reflected quantitatively a statistical regularity of interactions between variability and mean. When combined with a t value from t-distribution and a D value for relative precision, a sampling model was formed, n=(t/D·axb)2, which possessed theoretical significance and actual application potentials for related studies. Based on it, the optimal sample units were estimated when taking the linden spider mite and phytoseiid samples.
出处
《四川动物》
CSCD
北大核心
2012年第3期411-415,共5页
Sichuan Journal of Zoology
基金
国家留学基金中国-波兰教育交换计划
陕西省自然科学基金项目(2004KW-05
2009JZ006)
陕西理工学院启动基金项目(SLGQD0621)
关键词
椴始叶螨
植绥螨
变异系数
幂函数关系
抽样模型
Eotetranychus tiliarium
phytoseiids
coefficient of variation
power relation
sampling model