摘要
以水泥混凝土路面材料设计方案以及月降水量为输入,以路面摩擦系数表征路面抗滑性能为输出,利用BP神经网络分析水泥混凝土路面抗滑性能,研究表明,BP网络能考虑不同公路的实际差异,找到路面材料设计方案及月降水量与抗滑性能的最佳组合,为实际施工提供指导。
Taking cement concrete pavement material design scheme and monthly precipitation as the input, and taking anti-friction coefficient embodying anti-sliding property as the output, the paper analyzes the anti-sliding performance of cement concrete pavement by applying BP neu- ral network. Results show that BP network finds out the optimal combination of pavement material design scheme and monthly precipitation and anti-sliding performance by considering various highway conditions, which has provided guidance for actual construction.
出处
《山西建筑》
2012年第17期176-177,共2页
Shanxi Architecture
关键词
水泥混凝土
路面
BP神经网络
材料设计
月降水量
抗滑性能
cement concrete, pavement, BP neural network, material design, monthly precipitation, anti-sliding performance