期刊文献+

基于改进水平集方法的Micro-CT鼠脑三维自动化分割

An Automatic 3D Brain Segmentation Based on Improved Level-Set Method in Micro-CT Rat/Mouse Images
下载PDF
导出
摘要 目的提出一种基于改进水平集方法,能对Micro-CT鼠脑图像进行有效分割的自动化方法。方法首先利用模糊C均值聚类方法,并结合阈值分割和形态学方法自动设置水平集三维初始表面轮廓;其次使用梯度矢量流增强水平集在窄细等复杂结构处的演化能力;最后提出一种判断演化表面轮廓附近平均带宽能量是否达到最大化来设定停止条件;最终自动化获得准确分割的结果。采用基于区域法的评价方法,计算两个对应区域的重叠比例来验证该方法的改善效果。结果利用以上方法分别对3例大鼠图像和3例小鼠图像进行测试,以重叠比例来衡量准确率分别在88.3%和87.4%,与已有的经典方法相比,平均准确度分别提高了33%和6.7%。平均处理时间分别为8min和4min。结论本方法被证明能有效应用于Micro-CT图像中鼠脑组织的分割和提取,在准确性和便捷性上都有较大改进。 Objective In vivo Micro-PET/CT imaging of mouse/rat brain has been widely used to non-invasively monitor brain and provides researchers a better understanding of therapeutic effects in models of human neurological disease. For the need of further processing, extraction of brain tissue from head is required and vital. Methods An automatic multistep combination methods was proposed based on an improved level set framework, which includes (1) Use Fuzzy- C-Means method together with threshold and morphology methods to get the initial level-set surface automatically. (2) Combine gradient vector flow to enhance the gradient contrast and enforce the surface move toward to the object's surface much faster, especially obtain a significantly improvement in the regions of forehead and the joint between brain and neck. (3) Introduce an automatic stop condition based on average bandwidth energy maximization to overcome the leakage problem. Results 3 Micro-CT images of rat and 3 of mouse have been tested using the proposed methods and the average accuracy has increased by 33% for rat and 6.7% for mouse. The average processing duration for rat and mouse are about 8 minutes and 4 minutes, respectively. Conclusions The proposed methods were proved that it can be effectively used for Micro-PET/CT imaging of mouse/rat brain segmentation and have a great improvement on accuracy and convenience.
出处 《中国医疗器械杂志》 CAS 2012年第3期162-167,共6页 Chinese Journal of Medical Instrumentation
基金 上海交通大学医工交叉研究基金项目(YG2009MS02) 中国博士后科学基金(20110490741)
关键词 鼠脑 Micro—CT 水平集 模糊C均值聚类 梯度矢量流 三维分割 rat/mouse brain, Micro-CT, GVF, FCM, Level Set, 3D Segmentation
  • 相关文献

参考文献15

  • 1Osher S, Sethian JA. Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation [J]. Journal of Computational Physics, 1988, 79(1 ): 12-49.
  • 2Caselles V, Catte F, Coil T, Dibos E A geometric model for active contours in image processing [J]. Numeric Math, 1993, 66(1): 1-31.
  • 3Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: a level set approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
  • 4Zhang Y, Matuszewski B J, Shark L, et al. Medical image segmentation using new hybrid level-set method [A]. In: Proceedings of the 2008 Fifth International Conference BioMedical Visualization: Information Visualization in Medical and Biomedical lnformatics[C], 2008, 71-76.
  • 5Uberti MG, Boska MD, Liu Y. A semi-automatic image segmentation method for extraction of brain volume from in vivo mouse head magnetic resonance imaging using Constraint Level Sets [J]. J Neurosci Methods. 2009, 179(2): 338-344.
  • 6Bezdek JC. Pattern recognition with fuzzy objective function algorithms [M]. New York: Plenum Press, 1981, 95-107.
  • 7Pham D, Prince J. An adaptative fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities [J]. Pattern Recognition Letter, 1999, 20(1): 57-68.
  • 8W.J. Chen, M.L. Giger, U. Bick. A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast enhanced MRI images [J]. Acad. Radiol, 2006,13(1): 63-72.
  • 9李传富,周康源,黄丹,陈曾胜,何力,王庆临.基于先验知识的颅脑CT图像自动化分割[J].中国医疗器械杂志,2004,28(3):168-171. 被引量:15
  • 10Chenyang Xu and Jerry L. Prince. Gradient Vector Flow: A New External Force for Snakes [J]. IEEE Transactions on linage Processing, 1998, 7(3): 359-369.

二级参考文献3

  • 1Hongbing Ji,et al.An interactive segmentation method for medical images.Signal Processing,2002 6th International Conference on,2002,Vo11:pp26-30
  • 2Jong-Min Lee,et al.Evaluation of automated and semi-automated skull-stripping algorithms using similarity index and segmentation error.Computers in Biology and Medicine,2003,33(6):495-507
  • 3聂斌.医学图像分割技术及其进展[J].泰山医学院学报,2002,23(4):422-426. 被引量:16

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部