期刊文献+

结核分枝杆菌铁氧还蛋白还原酶FdrA和FprA在CYP125A1的电子传递链中的作用分析 被引量:2

Analysis of the role of FdrA and FprA in CYP125A1’s electron transfer chain, two ferredoxin reductases in mycobacterium tuberculosis
下载PDF
导出
摘要 目的体外评价结核分枝杆菌(Mtb)铁氧还蛋白还原酶FdrA和FprA的活性,探索它们分别与两种铁氧还蛋白的偶联作用,并分析它们在CYP125A1的电子传递链中的作用。方法采用大肠杆菌作为宿主克隆结核分枝杆菌FdrA、FprA和CYP125A1编码基因并进行蛋白外源表达;以NADH或NADPH为电子供体,2,6-二氯酚靛酚(DCPIP)为电子受体评价FdrA及FprA的活性;应用细胞色素C为电子受体研究FdrA或FprA与不同铁氧还蛋白的偶联作用;分析CYP125A1对4-胆甾烯-3-酮的代谢作用进而研究FdrA和FprA在CYP125A1的电子传递链中的作用。结果 FdrA对NADH亲和力较高,Fdx对FdrA活性有明显提升作用,菠菜铁氧还蛋白(spFDX)对其活性没有提升作用,FdrA/Fdx和FdrA/spFDX均不能支持CYP125A1的活性。FprA对NAPDH亲和力较高,Fdx和spFDX均对FprA活性有明显提升作用,Fdx尤甚,FprA/spFDX可以支持CYP125A1的活性,FprA/Fdx不能支持CYP125A1的活性。结论 FprA是结核分枝杆菌CYP125A1的电子传递链蛋白,FdrA可能不是CYP125A1的电子传递链蛋白。 Objective To systematically evaluate the activities of two FDRs (FdrA and FprA), study the interactions between these two FDRs and two ferredoxins, respectively, and analyze the endogenous redox partners of CYP125A1 in vitro. Methods The cloned genes were ligated to pET-30a(+) vector and transformed into E.coli BL21 DE3 cells separately. Recombinant proteins were generated by IPTG inducing, followed by affinity purification in Ni column. The activities of FdrA and FprA were evaluated in multilabel reader in the presence of NAD(P)H as the electron donor and DCPIP as the acceptor; the coupling activities of FDR and FDX were analyzed in the presence of cytochrome C as the electron aeceptor; the activity of CYP125A1 which was supported by FdrA or FprA was evaluated by HPLC. Results FdrA preferentially binded NADH and Fdx could increase its activity significantly while spinach ferredoxin (spFDX) didn't change its activity. The activity of CYP125A1 couldn't be supported by FdrA/Fdx or FdrA/spFDX. FprA preferentially binded NADPH and Fdx or spFDX increased its activity significantly, besides, Fdx had more potent effect. However, only FprA/spFDX could support the activity of CYP 125A 1. Conclusion FprA is one of electron transport chain complex proteins of CYP125A1 and FdrA may not be the redox partner of CYP125A1.
出处 《中国医药生物技术》 CSCD 2012年第3期178-186,共9页 Chinese Medicinal Biotechnology
基金 "十二五"国家科技重大专项(2012ZX09301002-005 2012ZX09301002-001)
关键词 分枝杆菌 结核 铁氧还蛋白NAPP还原酶 细胞色素P450酶系统 电子传递链复合蛋白质类 Mycobacterium tuberculosis Ferredoxin reductase Cytochrome P-450 enzyme system Electron transport chain complex proteins
  • 相关文献

参考文献14

  • 1Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobaeterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685):537-544.
  • 2Ouellet H, Johnston JB, Ortiz de Montellano PR. The Mycobacterium tuberculosis cytochrome P450 system. Arch Biochem Biophys, 2010, 493(1):82-95.
  • 3Belin P, Le Du MH, Fielding A, et al. Identification and structuralbasis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2009, 106( 18):7426-7431.
  • 4Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A, 2003, 100(22): 12989-12994.
  • 5Capyk JK, Kalscheuer R, Stewart GR, et al. Mycobacterial cytochrome p450 125 (eyp125) catalyzes the terminal hydroxylation ofc27 steroids. J Biol Chem, 2009, 284(51):35534-35542.
  • 6McLean KJ, Lafite P, Levy C, et al. The Structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection. J Biol Chem, 2009, 284(51):35524-35533.
  • 7Driscoll MD, McLean KJ, Levy C, et al. Structural and biochemical characterization of Mycobacterium tuberculosis CYP 142: evidence for multiple cholesterol 27-hydroxylase activities in a human pathogen. J Biol Chem, 2010, 285(49):38270-38282.
  • 8Johnston JB, Ouellet H, Ortiz de Montellano PR. Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J Biol Chem, 2010, 285(47):36352-36360.
  • 9Sevrioukova IF, Poulos TL. Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system. Arch Biochem Biophys, 2011,507(1):66-74.
  • 10Zanno A, Kwiatkowski N, Vaz AD, et al. MT FdR: a ferredoxin reductase from M. tuberculosis that couples to MT CYP51. Biochim Biophys Acta, 2005, 1707(2-3):157-169.

同被引文献28

  • 1Arakaki AK, Ceccarelli EA, Carrillo N. Plant-type ferredoxin-NADP*reductases: a basal structural framework and a multiplieity of functions[J]. FASEBJ' 1997, 11 (2): 133-140.
  • 2Sanchez-Azqueta A, Musumeci MA, Martinez-Julvez M, Ceccarelli EA,Medina M. Structural backgrounds for the formation of a catalyticallycompetent complex with NADP (H) during hydride transfer inferredoxin-NADP+ reductases [J]. Biochim Biophys Acta, 2012, 1817 (7):1063-1071.
  • 3Musumeci MA, Botti H, Buschiazzo A, Buschiazzo A, CeccarelliEA. Swapping FAD binding motifs between plastidic and bacterialferredoxin-NADP (H) reductases [J]. Biochemistry, 2011, 50 (12): 2111-2122.
  • 4Kimata-Ariga Y, Sakakibara Y, Ikegami T, Hase T. Electron transferof site-specifically cross-linked complexes between ferredoxin andferredoxin-NADP" reductase [J]. Biochemistry, 2010, 49 (46): 10013-10023.
  • 5Carrillo N, Ceccarelli EA. Open questions in ferredoxin-NADP'reductase catalytic mechanism [J], Eur J Biochem, 2003, 270 (9): 1900-1915.
  • 6Mulo P. Chloroplast-targeted ferredoxin-NADP' oxidoreductase (FNR):structure, function and location [J], Biochim Biophys Acta、2011, 1807(8): 927-934.
  • 7Ceccarelli EA, Arakaki AK, Cortez N, Carrillo N. Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin*NADP (H) reductases [J]. Biochim Biophvs Acta, 2004, 1698 (2): 155-165.
  • 8Musumeci MA, Arakaki AK, Rial DV, Catalana-Dupuy DL, CeccarelliEA. Modulation of the enzymatic efficiency of ferredoxin-NADP (H)reductase by the amino acid volume around the catalytic site [J]. FEBS J,2008, 275 (6): 1350-1366.
  • 9Yeom J, Jeon CO, Madsen EL, Park W. Ferredoxin-NADP' reductasefrom Pseudomonas putida functions as a ferric reductase [J]. JBacterial 2009, 191 (5): 1472-1479.
  • 10Dmit VI, Essigke T, Cortez N, Ullmana M. Mechanistic insight intoferredoxin-NADP (H) Reductase catalysis invoving the conservedGlutamate in the active site [J], JMB, 2010, 397 (1): 814-825.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部