期刊文献+

循环流化床锅炉炉内过渡区磨损机理数值模拟的研究 被引量:1

Numerical Study on Abrasion Mechanism in the Transition Area of a Circulating Fluidized Bed Boiler
下载PDF
导出
摘要 采用欧拉-欧拉双流体模型,对某大型循环流化床锅炉炉膛内过渡区的磨损机理进行数值模拟研究。模拟结果表明,密稀相过渡区存在大摆动及由其引起的大涡流,是引起过渡区磨损的主因。通过揭示的大摆动与大涡流的本质在于炉膛内沿密稀相过渡区高度上气固两相流的不稳定性来表明,这一结论与以往所认识的磨损机理的重要区别在于,以往的研究中,把这一区域的磨损机理仅仅简单地看作稳定流动下的涡流现象。研究深化了对循环流化床过渡区磨损机理的理论认识。 Numerical simulation, which adopting a multi-fluid Eulerian - Eulerian model, was conducted to probe the abrasion mechanism in transition area inside a large-scale circulating fluidized bed (CFB) boiler. The simulation results indicate that the main reasons for abrasion in the transition area are big waves as well as big vortexes which are led by the big waves in the transition zone of dense-phase and dilute-phase. We conclude that the essence of big waves and big vortexes is the instability of the gas-solid flow in the transition area, while previous studies on abrasion mechanism simply regard it as the result of vortexes which are produced by stable flow. This research provides a deeper sense of abrasion mechanism in the transition area of the CFB boiler.
出处 《锅炉技术》 北大核心 2012年第3期40-43,56,共5页 Boiler Technology
关键词 循环流化床 过渡区 气固两相流 流体摆动 大涡流 磨损机理 Circulating Fluidized Bed boiler transition area gas-solid flow fluid fluctuation big vortexes abrasion mechanism
  • 相关文献

参考文献7

二级参考文献31

  • 1Muschelknautz. E., Greif, M., & Trefz, M. (2006). Zyklone zur Abscheidung yon Feststoffen aus Gasen, In VDI-Warmeatlas, Lcdl-Lcd12. Berlin: Springer Verlag.
  • 2Myohanen, K., Hyppanen, T., & Loschkin, M. (2005). Converting measurement data to process knowledge by using three-dimensional CFB furnace model. In K. Cen (Ed.), Circulatingfluidized bed technology VIII (pp. 306-312). Beijing: International Academic Publishers/Beijing World Publishing Corporation.
  • 3Pallares, D., Johnsson, F., & Palonen, M. (2008). A comprehensive model of CFB combustion. In J. Werther, W. Nowak, K.-E. Wirth, & E.-U. Hartge (Eds.), Circulating fluidized bed technology IX (pp. 577-582). Hamburg: TuTech Innovation.
  • 4Puttmann, A., Hartge. E.-U., & Werther, J. (2006). Stationary simulation of the oxidation of n-butane to maleic anhydride in a riser/regenerator system. In American Institute of Chemical Engineers, AlChE annual meeting San Francisco, USA.
  • 5Pugsley, T. 5., & Berruti, E 0996). A predictive hydrodynamic model for circulating fluidized bed risers. Powder Technology, 89, 57-69.
  • 6Ratschow, L., Wischnewski, R., Hartge, E.-U., & Werther, J. (2009), Three-dimensional simulation of temperature distributions in large-scale circulating fluidized bed combustors. In G. Yue, H. Zhang, C. Zhao, & Z. Luo (Eds.). Proceedings of the 20th International Conference on Fluidized Bed Combustion (pp. 780-785 ). Beijing: Tsinghua University Press & Springer.
  • 7Ross, D. P., Heidenreich, D. K., & Zhang, D. K. (2000). Devolatilization times of coal particles in a fluidised-bed. Fuel, 79, 873-883.
  • 8Sekret, R., Nowak, W., Hartge, E.-U., & Werther, J. (2004). Distribution of gas concentration in a furnace of large-scale CFB boiler. Archivum Combustionis, 24, 169-178.
  • 9Sit, S. P., & Grace,J. R. (1981). Effect of bubble interaction on interphase mass transfer in gas fluidized beds. Chemical Engineering Science, 36, 327-335.
  • 10Stamatelopoulos, G.-N., & Darling, 8. (2008). Alstom's CFB technology, lnJ. Werther, W. Nowak, K.-E. Wirth, & E.-U. Hartge (Eds.), Circulatingfluidized bed technology IX (pp. 3-9). Hamburg: TuTech Innovation.

共引文献20

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部