期刊文献+

一维Lagrange四次元有限体积法的超收敛性 被引量:3

Superconvergence of One Dimension Lagrange Fourth-Order Finite Volume Element Method
下载PDF
导出
摘要 通过取等距节点四次Lagrange插值的导数超收敛点作为对偶单元的节点,取Lagrange型四次有限元空间为试探函数空间,取相应于对偶剖分的分片常数函数空间为检验函数空间的方法,得到了求解两点边值问题的四次元有限体积法,证明了该方法具有最优的H1模和L2模误差估计,并讨论了对偶单元节点的导数超收敛估计.数值实验验证了理论分析结果. We chose fourth order Lagrange interpolated function associated with the nodes as trial function,piecewise constant function as test function,and derivative superconvergent points as dual partition nodes so that a new kind of Lagrange fourth order finite volume element method was obtained for solving two-point boundary value problems.It was proved that the method has optimal H1 and L2 error estimates.The superconvergence of numerical derivatives was discussed.Finally,the numerical experiments show the results of theoretical analysis.
作者 李莎莎 左平
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第3期397-403,共7页 Journal of Jilin University:Science Edition
基金 黑龙江省青年自然科学基金(批准号:QC2011C103) 大庆师范学院青年基金(批准号:09ZQ02)
关键词 两点边值问题 四次有限体积元法 导数超收敛点 误差估计 two-point boundary value problem fourth order finite volume element method derivative superconvergent point error estimate
  • 相关文献

参考文献9

二级参考文献28

  • 1陈仲英.广义差分法一次元格式的L^2-估计[J].中山大学学报(自然科学版),1994,33(4):22-28. 被引量:9
  • 2田明忠,陈仲英.椭圆型方程的广义差分法(二次元)[J].高等学校计算数学学报,1991,13(2):99-113. 被引量:10
  • 3祝丕琦 李荣华.二阶椭圆偏微分方程的广义差分法(Ⅱ)-四边形网情形[J].6高校计算数学学报,1982,4:360-375.
  • 4Cai Zhiqiang,Steve McCormick. On the accuracy of the finite volume element method for diffusion equations on composite grid[J]. SIAM J. Numer. Anal, , 1990,27(3): 336-655.
  • 5Suli E. Convergence of finite volume schemes for Poissoffs equation on nonuniform meshes[J]. SIAM J. Numer. Anal. , 1991,28(5) : 1419-1430.
  • 6Jones W P, Menziest K R. Analysis of the cell-centred finite volume method for the diffusion equation[J]. Journal of Computational Physics, 2000,165:45-68.
  • 7Shu Shi, Yu H aiyuan, H uang Yunqing,Nie Cunyun. A symmetric finite volume element scheme on quadrilateral grids and superconvergence[J]. International Journal of Numerical Analysis and Modeling, 2006, 3(3) :348-360.
  • 8Li Ronghua,Chen Zhongying, Wu Wei. Generalized Difference Methods for Differential Equations Numerical Analysis of Finite Volume Methods[M]. Monographs and Textbooks in Pure and Applied Mathematics 226, Marcel Dekker Inc. ,2000.
  • 9Cai Zhiqiang, Jim Douglas J r, Moongyu Park. Development and analysis of higher order finite volume methods over rectangles for elliptic equations[J]. Advances in Computational Mathematics, 2003,19:3--33
  • 10Wang Tongke. High accuracy finite volume element method for two-point boundary value problem of second ordinary differential equation[J]. Numberical Mathematics,A Journal of Chinese Universities, 2002. 11(2) :197-212.

共引文献42

同被引文献18

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部