摘要
通过取等距节点四次Lagrange插值的导数超收敛点作为对偶单元的节点,取Lagrange型四次有限元空间为试探函数空间,取相应于对偶剖分的分片常数函数空间为检验函数空间的方法,得到了求解两点边值问题的四次元有限体积法,证明了该方法具有最优的H1模和L2模误差估计,并讨论了对偶单元节点的导数超收敛估计.数值实验验证了理论分析结果.
We chose fourth order Lagrange interpolated function associated with the nodes as trial function,piecewise constant function as test function,and derivative superconvergent points as dual partition nodes so that a new kind of Lagrange fourth order finite volume element method was obtained for solving two-point boundary value problems.It was proved that the method has optimal H1 and L2 error estimates.The superconvergence of numerical derivatives was discussed.Finally,the numerical experiments show the results of theoretical analysis.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2012年第3期397-403,共7页
Journal of Jilin University:Science Edition
基金
黑龙江省青年自然科学基金(批准号:QC2011C103)
大庆师范学院青年基金(批准号:09ZQ02)
关键词
两点边值问题
四次有限体积元法
导数超收敛点
误差估计
two-point boundary value problem
fourth order finite volume element method
derivative superconvergent point
error estimate