期刊文献+

利用改进的(G'/G)函数法求解非线性发展方程的行波解 被引量:4

Traveling Wave Solutions of Nonlinear Evolution Equations by Improved (G′/G) Method
下载PDF
导出
摘要 借助于Matlab软件,利用改进的(G'/G)函数法获得了修正的非线性Degasperis-Procesi方程和非线性波动方程精确形式的行波解,并且把用改进的(G'/G)函数法获得的结果与双曲正切函数法或(G'/G)函数法得到的结果进行比较.结果表明,该方法更有效,且可得到更多的精确形式行波解. With the help of Matlab software,we employed the improved(G′/G) method to obtain exact traveling wave solutions of modified nonlinear Degasperis-Procesi equation and nonlinear wave equation.The improved(G′/G) method provided more general forms of solutions.This method is effective.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第3期487-493,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J1030101) 国家自然科学基金青年基金(批准号:11001102 11001042) 教育部博士学科点新教师基金(批准号:20100043120001) 吉林大学符号计算与知识工程教育部重点实验室开放基金(批准号:09QNJJ002)
关键词 改进的(G'/G)函数法 修正的非线性Degasperis-Procesi方程 非线性波动方程 行波解 improved(G′/G) method modified nonlinear Degasperis-Procesi equation nonlinear wave equation tranveling wave solution
  • 相关文献

参考文献10

  • 1Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering [ M ]. Cambridge: Cambridge University Press, 1991.
  • 2Gu C H. Soliton Theory and Its Application [ M]. Berlin: Springer, 1995.
  • 3TIAN Bo, GAO Yi-tian. Truncated Painleve Expansion and a Wide-Ranging Type of Generalized Variable-Coefficient Kadomtsev-Petviashvili Equations [ J ]. Phys Lett A, 1995, 209 (5/6) : 297-304.
  • 4Wazwaz A M. The Variable Separated ODE and the Tanh Methods for Solving the Combined and the Double Combined Sinh-Cosh-Gordon Equations [ J]. Appl Math Comput, 2006, 177 (2) : 745-754.
  • 5WANG Ming-liang, LI Xiang-zheng, ZHANG Jin-liang. The (G'/G) -Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics [ J]. Phys Lett A, 2008, 372(4) : 417-423.
  • 6Malfliet W. Solitary Wave Solutions of Nonlinear Wave Equations [J]. Am J Phys, 1992, 60(7) : 650-654.
  • 7Ozis T, Asian I. Application of the (G'/G)-Expansion Method to Kawahara Type Equations Using Symbolic Computation [J]. Appl Math Comput, 2010, 216: 2360-2365.
  • 8Kudryashov N A. A Note on the (G'/G)-Expansion Method [ J].Appl Math Comput, 2010, 217: 1755-1758.
  • 9Degasperis A, Procesi M. Asymptotic Integrability in Symmetry and Perturbation Theory [ M ]. Hackensack: World Scientific, 1999: 23-37.
  • 10Lundmark H, Szmigielski J. Multi-peakon Solutions of the Degasperis-Procesi Equation [ J ]. Inverse Problems, 2003, 19(6) : 1241-1245.

同被引文献31

  • 1Malfliet W, Hereman W. The tanh Method. I . Exact Solutions of Nonlinear Evolution and Wave Equations [J].Phy.sica Scripta, 1996,54(6) ; 563-568.
  • 2Wazwaz A M. The tanh Method for Travelling Wave Solutions of Nonlinear Equations [J]. Appl Math Comput.2004, 154(3). 713-723.
  • 3FAN Engui,ZHANG Hongqing. A Note on the Homogeneous Balance Method [j]. Phys Lett A, 1998,246(5):403-406.
  • 4HE Jihuan,WU Xuhong. Exp-Function Method for Nonlinear Wave Equations [J]. Chaos Soliton.s and Fractals.2006,30(3) : 700-708.
  • 5WANG Mingliang, LI Xiangzheng,ZHANG Jinliang. The (GVG)-Expansion Method and Traveling WaveSolutions of Nonlinear Evolution Equations in Mathematical Physics [Jj. Phys Lett A,2008, 372(4): 41 7-423.
  • 6Raslan K R. The First Integral Method for Solving Some Important Nonlinear Partial Differential Equations [J].Nonlinear Dynamics* 200.. 53(4) : 281-286.
  • 7LU Bin. Division Theorem Combined with the Riccati Equation for Solving Some Nonlinear Schrodinger-LikeEquations [J]. Appl Math Comput,2012 , 219(4) : 1686-1694.
  • 8Wazwaz A M. A New Fifth-Order Nonlinear Integrable Equations: Multiple Soliton Solutions [J]. Phys Scr,2011, 83(1): 015012.
  • 9Hirota R. Direct Methods in Soliton Theory [M]. Topics in Current Physics. New York: Springer, 1980.
  • 10Matveev V B,Sail M A. Darboux Transformation and Solitons [M]. Berlin* Springer-Verlag, 1991.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部