期刊文献+

基于CMAQ模型的随机响应曲面不确定性传递分析方法实现与评价 被引量:5

Implementation and evaluation of uncertainty propagation using stochastic response surface method based on the CMAQ model
原文传递
导出
摘要 针对蒙特卡洛法在复杂环境模型进行不确定性传递分析时对计算机和时间资源需求巨大的缺点,本文引进快速高效的随机响应曲面法,并将其成功应用于CMAQ区域空气质量模型的不确定性传递分析,建立了基于CMAQ区域空气质量模型的不确定性分析概念框架.采用2阶和3阶随机响应曲面法,研究了排放清单不确定性对臭氧模拟结果的影响,并与1000次蒙特卡洛模拟结果进行对比.结果表明:3种模拟情景下臭氧浓度的均值几乎相同,模拟结果的概率分布曲线也基本一致,而采用随机响应曲面法可以极大节省模拟所需时间,提高计算效率,显示随机响应曲面法具有在复杂大气环境模型中进行不确定性传递分析的潜在价值. A eomputationally efficient method named stochastic response surface method (SRSM) for uncertainty propagation was used in this study to address extensive requirements for computational resources and time by the Monte Carlo (MC) approach. A conceptual framework for uncertainty propagation analysis based on the Community Multi-scale Air Quality (CMAQ) model was established. The 2-order and 3-order SRSM were implemented to estimate the impacts of uncertainties in emission inventories on simulated ozone concentrations, and the outputs were compared with those from the traditional MC approach with 1000 times of simulation. The results showed that average ozone concentrations at three uncertainty propagation scenarios were almost the same and three probability density functions at peak ozone concentrations agreed well. The SRSM approach can significantly reduce the simulation time and improve the calculation efficiency, implying its potential in conducting uncertainty propagation analysis of complex atmospheric environmental models such as the CMAQ model.
出处 《环境科学学报》 CAS CSCD 北大核心 2012年第6期1289-1298,共10页 Acta Scientiae Circumstantiae
基金 国家自然科学基金(No.40875061)~~
关键词 随机响应曲面法 不确定性传递 CMAQ模型 蒙特卡洛法 SRSM uncertainty propagation CMAQ Monte Carlo
  • 相关文献

参考文献22

  • 1陈吉宁.2001.环境系统不确定性分析的理论与发展[A].第二届环境模拟与污染控制学术研讨会[C].北京.13-14.
  • 2Castellanos P,Stehr J W, Dickerson R R, et al. 2009. The sensitivity of modeled ozone to the temporal distribution of point, area, and mobile source emissions in the eastern United States[ J ]. Atmospheric Environment ,43 ( 30 ) :4603-4611.
  • 3Frey H C,Zheng J Y. 2002a. Quantification of variability and uncertainty in air pollutant emission inventories: Method and case study for utility NO, emission [ J]. Journal of the Air & Waste Management Association ,52 ( 9 ) : 1083-1095.
  • 4Frey H C ,Zheng J Y. 2002b. Probabilistic analysis of driving cycle based highway vehicle emission factors [ J ]. Environmental Science & Technology ,36 (23) :5184-5191.
  • 5何凤霞,张翠莲.蒙特卡罗方法的应用及算例[J].华北电力大学学报(自然科学版),2005,32(3):110-112. 被引量:25
  • 6Huang J P, Fung J, Zhang Y, et al. 2005. Improvement of air quality modeling in Hong Kong by using MM5 coupled with LSM [ C ] .The 4th Annual CMAS Models-3 Users' Conference. UNC-Chapel Hill: 1-6.
  • 7Hanna S R, Chang J C, Fernua M E. 1998. Monte Carlo estimates of uncertainties in predictions by a photochemical grid model ( UAM- IV) due to uncertainties in input variables [ J ]. Atmospheric Environment, 32 (21 ) :3619- 3628.
  • 8Isukapalli S S. 1999. Uncertainty analysis of transport transformation models [ D ]. New Brunswick Rutgers: the State University of New Jersey.
  • 9Isukapalli S S, Roy A, Georgopoulos P G. 1998. Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems [ J ]. Risk Analysis, 18 (3) : 351-363.
  • 10Isukapalli S S, Wang S W, Lahoti N, et al. 2005. Efficient techniques for sensitivity and uncertainty analysis of muhiscale air quality models [ AJ. The 4th Annual CMAS Models- 3 User's Conference [ C ]. UNC-Chapel Hill. 1-25.

二级参考文献133

共引文献384

同被引文献56

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部