期刊文献+

基于不确定度和敏感度分析的LCA数据质量评估与控制方法 被引量:43

LCA data quality assessment and control based on uncertainty and sensitivity analysis
原文传递
导出
摘要 通过提出定量评估并控制LCA数据质量的系统化方法(称为CLCD-Q方法),从LCA案例的原始数据和清单数据算法开始评估不确定度;然后通过两次蒙特卡罗模拟,先后得出单元过程清单数据及LCA结果的不确定度;最后结合敏感度分析,辨识出LCA模型中具有高不确定度和高敏感度的关键数据,从而指出控制和改进数据质量的关键点.结果发现,上述方法可在eBalance软件和CLCD数据库中实现.同时,对中国电网电力生命周期的示例研究表明,上述方法将传统的LCA数据质量评估延伸到了原始数据层面,从而为数据收集过程中的原始数据与算法选择提供了直接的支持,同时也可以针对数据质量不达标的LCA结果,指出最有效的改进方向. This paper presents a systematic approach, named as CLCD-Q method, to assess and control data quality of LCA studies. The method starts with the uncertainty assessment of raw data and mathematical relations based on pedigree matrix. Afterwards, the uncertainties of process data and LCA results can be derived from two Monte Carlo simulations. For each LCA result, key process data and raw data with high uncertainty and high sensitivity in LCA model can be identified, which indicates the "hot spot" for data quality improvement. CLCD-Q is supported by LCA software (eBalance) and CLCD database. The case study of Chinese grid power shows that this method can guide the selection of raw data and the mathematical relations with the uncertainty assessment extending on the raw data. It also provides a guide for efficient data quality improvement by revealing the most relevant data in the life cycle model.
出处 《环境科学学报》 CAS CSCD 北大核心 2012年第6期1529-1536,共8页 Acta Scientiae Circumstantiae
基金 "十一五"科技支撑计划项目(No.2006BAC02A02) 国家高技术研究发展计划(No.2011AA060905)~~
关键词 生命周期评价 数据质量评估 数据质量控制 不确定度分析 敏感度分析 蒙特卡罗模拟 life cycle assessment data quality assessment data quality control uncertainty analysis sensitivity analysis Monte Carlo simulation
  • 相关文献

参考文献29

  • 1British Standards Institution (BSI). 2008. PAS 2050. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services [ S ]. British : DEFRA.
  • 2Chevalier J L, Le Teno J F. 1996. Life cycle analysis with Ill-defined data and its application to building products [ J]. Int J Life Cycle Assess,1 (2) : 90-96.
  • 3Ciroth A,Fleischer G,Steinbach J. 2004. Uncertainty calculation in life cycle assessments: a combined model of simulation and approximation [J]. Int J Life Cycle Assess, 9(4) :216-226.
  • 4Frischknecht R, Jungbluth N, Ahhaus H J, et al. 2007. Overview and methodology[ R ]. Ecoinvent report No. 1. Dubendorf: Swiss Centre for Life Cycle Inventories. 42-47.
  • 5Guido W, Marta S. 2003. Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator [ J]. Journal of Cleaner Production, 11:279-292.
  • 6Heijungs R. 1996. Identification of key issues for further investigation in improving the reliability of life cycle assessments [ J ]. Journal of Cleaner Production, 4 ( 3/4 ) : 159-166.
  • 7Heijungs R. 2010. Sensitivity coefficients for matrix-based LCA [ J]. Int J Life Cycle Assess, 15(5) :511-520.
  • 8Hong J L, Shanna S, Ralph K R, et al. 2010. Analytical uncertainty propagation in life cycle inventory and impact assessment: application to an automobile front panel [J]. Int J Life Cycle Assess, 15(5) : 499-510.
  • 9Huijbregts M, Giligamse W, Ragas A D, et al. 2003. Evaluating uncertainty in environmental life cycle assessment. A case study comparing two insulation options for Dutch one-family dwelling[ J]. Environ Sci Technol, 37:2600-2608.
  • 10International Organisation for Standardisation. 2006a. ISO 14040. Environmental management-Life cycle assessment-Principles and framework [ S ]. Geneva : International Organization for Standardization.

二级参考文献71

共引文献300

同被引文献473

引证文献43

二级引证文献261

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部