期刊文献+

基于模糊Q学习算法的AGV路径规划研究 被引量:7

Research on path planning of automated guided vehicles based on algorithm of fuzzy Q-learning
下载PDF
导出
摘要 路径规划是AGV控制系统中的关键技术。文章在分析了AGV路径规划方法的基础上,对于未知环境下AGV的局部路径规划问题,设计了一种改进的模糊Q学习路径规划策略,并给出具体执行步骤,最后用Matlab进行了仿真。仿真结果表明该方法规划的轨迹平滑、实时性好、具有良好的效果,该研究为进一步控制AGV奠定了基础。
出处 《制造业自动化》 北大核心 2012年第11期4-6,16,共4页 Manufacturing Automation
  • 相关文献

参考文献6

  • 1Watkins C., Learning from delayed rewards[J]. PhD Thesis, University of Cambrige, England, 1989.
  • 2陈卫东,席裕庚,顾冬雷.自主机器人的强化学习研究进展[J].机器人,2001,23(4):379-384. 被引量:16
  • 3P. Y. Glorennec, Fuzzy Q-learning and dynamical fuzzy Q-learning, in Proc. FUZZ-IEEE' 94, 3rd Int. Conf. Fuzzy Syst., Orlando, FL Vol. 1: 474-479.
  • 4YU Weiwei, C.Sabourin, K.Madani, YAN Jie, Design of Footstep Planning Controller for Humanoid Robot in Dynamic Environment, 2008 IEEE International Symposium on Knowledge Acquisition and Modeling, China, Wuhan, 2008.12.
  • 5乔俊飞,侯占军,阮晓钢.基于神经网络的强化学习在避障中的应用[J].清华大学学报(自然科学版),2008,48(S2):1747-1750. 被引量:27
  • 6朴松昊 洪炳榕.一种动态环境下移动机器人的路径规划方法.清华大学学报,2008,48(32):1747-1750.

二级参考文献4

  • 1Lin L J,Proc AAAI'91,1991年,781页
  • 2Lin L J,From Animals to Animates:Int Conference on Simulation of Adaptive Behavior,1991年
  • 3Christopher J.C.H. Watkins,Peter Dayan. Technical Note: Q-Learning[J] 1992,Machine Learning(3-4):279~292
  • 4Christopher J. C. H. Watkins,Peter Dayan. Q-learning[J] 1992,Machine Learning(3-4):279~292

共引文献41

同被引文献65

  • 1Amanda LAMPTON,John VALASEK,Mrinal KUMAR.Multiresolution state-space discretization for Q-Learning with pseudorandomized discretization[J].控制理论与应用(英文版),2011,9(3):431-439. 被引量:1
  • 2张文志,吕恬生.Reactive fuzzy controller design by Q-learning for mobile robot navigation[J].Journal of Harbin Institute of Technology(New Series),2005,12(3):319-324. 被引量:5
  • 3HAMZHEEL M, FARAHANI R Z. An ant colony-based al- gorithm for finding the shortest bidirectional path for automa- ted guided vehicles in a block layout [ J ]. International Journal of Advanced Manufacturing Technology, 2013, 64(1-4) :399-409.
  • 4SOK Y L, HAI W Y. Navigation of automated guided vehi- cles using magnet spot guidance method [ J ]. Robotics and Computer-Integrated Manufacturing, 2012,28 ( 3 ) : 425- 436.
  • 5YING C H, TAW L. Zone design and control for vehicle collision prevention and load balancing in a zone control AGV system [ J ]. Computers & Industrial Engineering, 2009,56( 1 ) :417-432.
  • 6LIANG J H, RAO Z Q. Research and I mplmentation of vis- ual control technology with AGV [ C ]//Proceeding of the 2011 IEEE International Conference on Electric Information and Control Engineering. Wuhan: [s. n. ] ,2011:1588-1591.
  • 7RAJEEVA L M, WEE H G, NG W C, et al. Cyclic dead- lock prediction and avoidance for zone-controlled AGV sys- tem [ J ]. International Journal of Production Econom- ics,2003,83 ( 3 ) :309-324.
  • 8CHE F H. A simulation study of a bi-directional load-ex- changeable automated guided vehicle system[ J]. Comput- ers & Industrial Engineering, 2010,58 (4) : 594-601.
  • 9Chen Chunlin, Yang Pei, Zhou Xianzhong. A Quantum Inspired Q-learning Algorithm for Indoor Robot Navigation[C]//Proc. of IEEE International Conference on Networking, Sensing and Control. [S. l.]: IEEE Press, 2008: 1599-1603.
  • 10Niu Lianqiang, Li Ling. Application of Reinforcement Learn- ing in Autonomous Navigation for Virtual Vehicles[C]//Proc. of the 9th International Conference on Hybrid Intelligent Systems. [S. l.]: IEEE Press, 2009: 30-32.

引证文献7

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部