期刊文献+

基于Hausdorff距离的曲线降阶算法

Degree Reduction Algorithm of Bezier Curves Based on Hausdorff Distance
下载PDF
导出
摘要 Hausdorff距离常被用于衡量两条曲线间的逼近效果。该文以Bézier曲线为例,提出了基于分段二次函数重新参数化的新算法,用于求解平面或空间曲线的降阶逼近问题。理论上该文算法同样适用于B样条曲线等的逼近问题。数值例子表明了新算法可以具有Hausdorff距离下更好的逼近效果。 Hausdorff distance is frequently used to measure the error distance between two curves.This paper presents a reparameterization-based method for the degree reduction problem of Bézier curves.In principle,the new method can also be used for B-spline curve cases.Numerical examples show that the new method is able to have a better approximation effect under Hausdorff distance than those of previous methods.
出处 《杭州电子科技大学学报(自然科学版)》 2012年第2期6-9,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然基金资助项目(60803076) 浙江省自然科学基金资助项目(Y1090004)
关键词 降阶逼近 重新参数化 豪斯多夫距离 贝齐儿曲线 degree reduction reparameterization Hausdorff distance Bézier curves
  • 相关文献

参考文献10

  • 1Ahn Y. Degree reduction of B6zier curves with Ck-continuity using Jacobi polynomials [ J]. Computer Aided Geometric Design, 2003, 20(8): 423-434.
  • 2Bogacki P, Weinstein S E, Xu Y. Degree reduction of B6zier curves by uniform approximation with endpoim interpolation [J]. Computer-Aided Design, 1995, 27 (9):651-661.
  • 3Brunnett G, Sehreiber T, Braun J. The geometry of optimal degree reduction of B6zier curves [ J ]. Computer Aided Geo- metric Design, 1996, 13 (8):773 - 788.
  • 4Lachance M A. Chebyshev eeonomization for parametric surfaces [J]. Computer Aided Geometric Design, 1988,5195 - 208.
  • 5Eck M. Least squares degree reduction of B6zier curves [J]. Computer-Aided Design, 1995, 27 (11) : 845 -851.
  • 6Ahn Y, Lee B, Park Y. Constrained polynomial degree reduction in the L2 - norm equals best weighted Euclidean approx- imation of B6zier coefficients [J]. Computer Aided Geometric Design, 2004, 21 (2) : 181 - 191.
  • 7Lu L Wang. G Application of Chebyshev II - Bemstein basis transformations to degree reduction of B6zier curves [ J ]. Journal of Computational and Applied Mathematics, 2008,21 ( 1 ) : 52 - 65.
  • 8Lu L. A note on constrained degree reduction of polynomials in Bemstein - B6zier forms over simplex domain [ J ]. Journal of Computational and Applied Mathematics, 2009, 29 ( 1 ) : 324 - 326.
  • 9ZHANG Renjiang,WANG Guojin.Constrained Bézier curves' best multi-degree reduction in the L_2-norm[J].Progress in Natural Science:Materials International,2005,15(9):843-850. 被引量:20
  • 10Zhou L, Wang G. Constrained multi -degree reduction of B6zier surfaces using Jacobi polynomials [ J]. Computer Aided Geometric Design, 2009, 26 (3) : 259 -270.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部