期刊文献+

融合自适应权重和置信传播的立体匹配算法 被引量:1

An Algorithm Fusion of Adaptive Support-weight Approach and Belief Propagation for Stereo Matching
下载PDF
导出
摘要 为了提高传统置信传播立体匹配算法在深度不连续区域的准确率问题,该文提出一种融合局部自适应权重和置信传播的立体匹配算法。该方法采用改进的局部自适应权重算法,获得初始视差估计,通过左右一致性检测出不可信象素点;对分割后的图像,采用新的消息传播策略,进行消息的不对称传递。实验结果表明,该算法对深度不连续和弱纹理区域均有较好的匹配结果,能获得比较理想的视差图。 An algorithm fusion of local adaptive support-weight approach and belief propagation is proposed to resolve the inaccuracy among the depth discontinues area.Using improved local adaptive support-weight approach to get initial disparity,to detect unlikely pixels with cross-check technology,and to segment image by using new strategy with unsymmetrical messages propagating.The experimental results indicate that the algorithm has a better performance in low texture and depth discontinues region.
出处 《杭州电子科技大学学报(自然科学版)》 2012年第2期10-13,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(60902077) 浙江省自然科学基金资助项目(Y1111229)
关键词 立体匹配 局部自适应权重 置信传播 左右一致性检测 stereo matching local adaptive support-weight belief propagation cross-checked
  • 相关文献

参考文献4

  • 1Yoon K J, Kweon I S. Locally adaptive support-weight approach for visual correspondence search[ C]. San Diego: Computer Vision and Pattern Recognition, 2005:924 -931.
  • 2Yang Q, Wang L, Yang R. Real-time global stereo matching using hierarchical belief propagation [ C ]. In Proc: British Machine Vision Conf, 2006:989-998.
  • 3Scharstein D, Szeliski R. A tamonomy and evaluation of dense two-frame stereo correspondence algorithms[ J]. Interna- tional Journal of Computer Vision, 2002, 47 ( 1 ) :7 - 42.
  • 4朱清波,王宏远.使用图像分割的遮挡恢复立体匹配算法[J].华中科技大学学报(自然科学版),2010,38(1):81-84. 被引量:5

二级参考文献15

  • 1Felzenszwalb P F, Huttenlocher D P. Efficient belief propaggation for early vision[J]. Int'l J Computer Vision, 2006, 70(1): 41-54.
  • 2Wang Z F, Zheng Z G. A region based stereo matching algorithm using cooperative optimization[C]// Proc IEEE CS Conf Comoputer Vision and Pattern Recognition. Anchorage: IEEE, 2008: 1-8.
  • 3Tappen M F, Freeman W T. Comparison of graph cuts with belief propagation for stereo[C]//Proc IEEE Int' l Conf Computer Vision. Nice: IEEE, 2003 : 900-906.
  • 4Kolmogorov V, Zabih R. Graph cut algorithms for binocular stereo with occlusions[M]// Mathematical Models in Computer Vision: The Handbook. New York: Springer-Verlag, 2005.
  • 5Birchfield S, Tomasi C. A pixel dissimilarity measure that is insensitive to image sampling[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1998, 20(4): 401-406.
  • 6国际立体匹配算法研究社区.所有提交算法的最新性能评估报告[EB/OL].[2009-03-21].http:∥vision.middlebury.edu/stereo/eval,200.
  • 7Zhu Qingbo, Wang Hongyuan, Tian Wen. A practical new approach to 3D scene reeovery[J]. Signal Processing, 2009, 89(11): 2 152-2 158.
  • 8Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. Int'l J Computer Vision, 2002, 47(1-3) : 7-42.
  • 9Yoon K J, Kwen I S. Adaptive support-weight approach for correspondence search[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2006, 28 (4) : 650-656.
  • 10Gerrits M, Bekaert P. Local stereo matching with segmentation-based outlier rejection[C]//Proe IEEE 3rd Canadian Conf Computer and Robot Vision. Quebec: IEEE, 2006: 1-7.

共引文献4

同被引文献13

  • 1SUN J,ZHENG N N,SHUM H Y. Stereo matching using belief propagation[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,(07):787-800.
  • 2IHLRE A T,FISCHER J W Ⅲ,WILLSKY A S. Loopy belief propagation:convergence and effects of message errors[J].The Journal of Machine Learning Research,2005.905-936.
  • 3WEISS Y,FREEMAN W T. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs[J].{H}IEEE Transactions on Information Theory,2001,(02):736-744.
  • 4YANG Q,WANG L,YANG R. Stereo matching with color-weighted correlation,hierarchical belief propagation,and occlusion handling[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,(03):492-504.
  • 5KLAUS A,SORMANN M. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[A].Washington,DC:IEEE Computer Society,2006.15-18.
  • 6FELZENSZWALB P,HUTTENLOCHER D P. Efficient belief propagation for early vision[J].{H}International Journal of Computer Vision,2006,(01):41-54.doi:10.1007/s11263-006-7899-4.
  • 7TAPPEN M F,FREEMAN W T. Comparison of graph cuts with belief propagation for stereo,using identical MRF parameters[A].Washington,DC:IEEE Computer Society,2003.900-906.
  • 8LI C M,XU C Y,GUI C F. Level set evolution without re-initialization:a new variational formulation[A].Washington,DC:IEEE Computer Society,2005.430-436.
  • 9AMBROSCH K,KUBINGER W. Accurate hardware-based stereo vision[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2010,(11):1303-1316.
  • 10曹云云,达飞鹏,邵静.一种具有选择性的置信度传播立体匹配算法[J].东南大学学报(自然科学版),2011,41(5):1013-1018. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部