期刊文献+

基于帧图像语义上下文的地形推理策略

Terrain Inference Strategy Based on Semantic Context of Frame Images
原文传递
导出
摘要 基于场景帧图像语义上下文概念,提出一种融合不同场景时空信息的自适应在线地形推理策略TIBSC(Terrain Inference Based on Semantic Context).首先,提取不同场景图像近视场像素的特征向量和地形类别,构建地形样本候选数据库;然后,从地形样本候选数据库中选取与当前场景图像远视场区域语义上下文最相似的若干帧地形样本,构建当前场景地形判别数据库;最后,基于当前场景地形判别数据库及贝叶斯法则,对当前场景远视场区域像素所属地形类别进行推理.基于数据集的仿真实验表明:在影响TIBSC推理精度的所有因素中,基于语义距离准则的最优样本选择以及样本数据的在线扩充两大模型变量起主导作用.同时,基于相同分类特征的TIBSC策略在推理精度上优于同类研究结果. Based on the concept of semantic context of flame images, an adaptive online terrain inference strategy (TIB SC, terrain inference based on semantic) is proposed, which incorporates spatiotemporal information of different scenes. Firstly, feature vectors and terrain categories of close-field-of-view pixels of different scene images are extracted to construct the terrain sample candidate database. Secondly, samples with most similar semantic context to that of the distant-field-of-view region of current scene are selected from the terrain sample candidate database to further construct the terrain discriminant database of the current scene. Finally, based on the discriminant database of the current scene and the Bayesian rule, terrain categories of distant-field-of-view pixels of the current scene are inferred. Results of the simulation experiments based on database show that the optimal sample selection based on semantic distance criterion and the online sample expansion play the dominant role among all the factors influencing the inference accuracy of TIBSC. And the results also indicate that, TIBSC model outperforms other existing methods in the term of inference accuracy.
出处 《机器人》 EI CSCD 北大核心 2012年第3期299-306,共8页 Robot
基金 国家自然科学基金资助项目(51075217 31071325) 宁波市自然科学基金资助项目(2011A610198).
关键词 在线地形推理 场景分析 语义上下文 online terrain inference scene analysis semantic context
  • 相关文献

参考文献12

  • 1Ollis M, Huang W H, Happold M, et al. Image-based path plan- ning for outdoor mobile robots[C]//IEEE International Confer-ence on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2008: 2723-2728.
  • 2Dahlkamp H, Kaehler A, Stavens D, et al. Self-supervised monocular road detection in desert terrain[C]//Robotics: Sci- ence & Systems. Massachusetts, MA, USA: MIT Press, 2006.
  • 3Jackel L D, Krotkov E, Perschbacher M, et al. The DARPA LAGR program: Goals, challenges, methodology, and phase I results[J]. Journal of Field Robotics, 2006, 23(11/12): 945-973.
  • 4Happold M, Ollis M, Johnson N. Enhancing supervised ter- rain classification with predictive unsupervised learning[C]// Robotics: Science and Systems. Massachusetts, MA, USA: MIT Press, 2006.
  • 5Bajracharya M, Howard A, Matthies L H. Autonomous off-road navigation with end-to-end learning for the LAGR program[J]. Journal of Field Robotics, 2009, 26(1): 3-25.
  • 6王明军,周俊,屠珺,刘成良.基于条件随机场的大范围地形感知框架[J].机器人,2010,32(3):326-333. 被引量:8
  • 7Bosch A, Munoz X, Marti R. Which is the best way to orga- nize/classify images by content?[J]. Image and Vision Comput- ing, 2007, 25(6): 778-791.
  • 8Duda R, Hart P E, Stork D G. Pattern classification[M]. 2nd ed. New York, NY, USA: John Wiley and Sons, 2000.
  • 9Bosch A, Zisserman A, Munoz X. Scene classification via pLSA [M]//Lecture Notes in Computer Science, vol.3954. Berlin, Ger- many: Springer-Verlag, 2006: 517-530.
  • 10Li F F, Perona R A Bayesian hierarchical model for learning nat- ural scene categories[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2005: 524-531.

二级参考文献14

  • 1Ollis M, Huang W H, Happold M, et al. Image-based path planning for outdoor mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2008: 2723-2728.
  • 2Dahlkamp H, Kaehler A, Stavens D, et al. Self-supervised monocular road detection in desert terrain[C]//Robotics: Science and Systems. 2006. http://www.roboticsproceedings.org/rss 02/p05.pdf.
  • 3Jackel L D, Krotkov E, Perschbacher M, et al. The DARPA LAGR program: Goals, challenges, methodology, and phase I results[J]. Journal of Field Robotics, 2006, 23(11/12): 945-973.
  • 4Happold M, Ollis M, Johnson N. Enhancing supervised terrain classification with predictive unsupervised learning[C]//Robotics: Science and Systems. 2006. http://www.roboticsproceedings.org/rss02/p06.pdf.
  • 5Bajracharya M, Howard A, Matthies L H, et al. Autonomous off-road navigation with end-to-end learning for the LAGR program[J]. Journal of Field Robotics, 2009, 26(1): 3-25.
  • 6Lookingbill A, Lieb D, Thrun S. Optical flow approaches for self-supervised learning in autonomous mobile robot navigation[M]//Autonomous Navigation in Dynamic Environments. Berlin, Germany: Springer, 2007: 29-44.
  • 7Hadsell R, Sermanet P, Ben J, et al. Learning long-range vision for autonomous off-road driving[J]. Journal of Field Robotics, 2009, 26(2): 120-144.
  • 8Procopio M J, Mulligan J, Grudic G. Learning terrain segmentation with classifier ensembles for autonomous robot navigation in unstructured environments[J]. Journal of Field Robotics, 2009, 26(2): 145-175.
  • 9Lafferty J D, McCallum A, Pereira F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]//The Eighteenth International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001: 282-289.
  • 10Felzenszwalb P F, Huttenlocher D E Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59(2): 167-181.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部