摘要
通过变量代换,将一类二阶变系数线性微分方程转化为可降阶的微分方程,再利用一阶线性微分方程的解法求解,从而给出了一个运算量较小的通解公式并举例加以应用.
Using variable substitution, a second order linear differential equation with variable coefficients is transformed into a reducible differential equation, and is solved, as the first order linear differential equation, with a formula for general solution which can be calculated easily. Examples are given to verify our method.
出处
《高等数学研究》
2012年第3期28-30,共3页
Studies in College Mathematics
基金
国家精品课程项目(高等数学)
北京航空航天大学课程建设项目(数学分析)
关键词
通解
变系数
变量代换
降阶法
general solution, variable coefficients, substitution, order reduction