期刊文献+

一维非周期序列电子态的局域性质

Localization properties of electronic states of one-dimensional aperiodic sequences
下载PDF
导出
摘要 在单电子紧束缚近似下,研究几种典型的一维非周期序列,通过数值计算分析它们的电子性质.从波函数的空间分布情况和局域长度的取值范围两方面比较分析了这些序列在电子局域性质上的差异.结果表明,伽罗华序列的局域性最强,图厄-莫尔斯序列的扩展性最强. Several typical one-dimensional aperiodic sequences are studied in the framework of the tightbinding approximation. The electronic properties are numerically calculated and analyzed. From the spatial distribution of the wave function and the range of the localization length, the differences of electronic properties among these sequences are compared. The results show that Galois sequences is the most localized while the Thue-Morse sequence is the most extended.
作者 万若楠
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2012年第3期45-47,59,共4页 Journal of Northwest Normal University(Natural Science)
关键词 非周期序列 电子态 局域性质 波函数 aperiodic sequences electronic state localization property wave function
  • 相关文献

参考文献10

  • 1NIU Q, NORI F. Spectral splitting and wave- function scaling in quasicrystalline and hierarchical structures[J]. PhysRev B, 1990, 42(16): 10329- 10341.
  • 2LIU You-yan, FU Xiu-jun, DENG Wen-ji, et al. Gap-labeling properties of the energy spectrum for one-dimensional Fibonacci quasilattices[J]. PhysRev B, 1992, 46(14): 9216-9219.
  • 3GUMBS G, ALI M K. Dynamical maps, Cantor spectra, and localization for Fibonaeci and related quasiperiodic lattices[J]. Phys Rev Lett, 1988, 60(11): 1081-1084.
  • 4SIL S, KARMAKAR Extended states in application to the chain[J]. Phys Rev B, S N, MOITRA R, et al. one-dimensional lattices : quasiperiodic copper-mean 1993, 48(6): 4192-4195.
  • 5RIKLUND R, SEVERIN M, LIU You-yan. The Thue-Morse aperiodic crystal, a link between the Fibonacci quasicrystal and the periodic crystal[J]. JModPhys B, 1987, 1(1): 121-132.
  • 6WAN Ruo-nan, FU Xiu-jun. Localization properties of electronic states of one-dimensional Galois sequences[J]. Solid State Communications, 2010, 150(19-20) : 919-922.
  • 7CARPENA P, BERNAOLA-GALVAN P, IVANOV P Ch, et al. Metal-insulator transition in chains with correlated disorder[J]. Nature, 2002, 418: 955-959.
  • 8NIU Q, NORI F. Renormalization-group study of one-dimensional quasiperiodic systems[J]. Phys Rev Lett, 1986, 57(16): 2057-2060.
  • 9DEMOURA F, LYRA M L. Delocalization in the 1D Anderson model with long-range correlated disorder[J]. PhysRev Lett, 1998, 81(17): 3735- 3738.
  • 10XIONG Shi-jie, ZHANG Gui-pin. Scaling behavior of the metal-insulator transition in one-dimensional disordered systems with long-range hopping [J]. PhysRevB, 2003, 68(17): 174201.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部